Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 16(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37297332

RESUMO

The aim of this study was to determine the bactericidal potential of graphene oxide (GO) in contact with four species of bacteria: E. coli, S. mutans, S. aureus and E. faecalis. Bacterial cell suspensions of each species were incubated in a medium containing GO, with incubation times of 5, 10, 30 and 60 min, at final concentrations of 50, 100, 200, 300 and 500 µg/mL. The cytotoxicity of GO was evaluated using live/dead staining. The results were recorded using a BD Accuri C6 flow cytofluorimeter. Obtained data were analyzed using BD CSampler software. A significant bacteria viability reduction was noted in all GO-containing samples. The antibacterial properties of GO were strongly influenced by GO concentration and incubation time. The highest bactericidal activity was observed at concentrations of 300 and 500 µg/mL for all incubation times (5, 10, 30 and 60 min). The highest antimicrobial potential was observed for E. coli: after 60 min, the mortality rate was 94% at 300 µg/mL GO and 96% at 500 µg/mL GO; the lowest was found for S. aureus-49% (300 µg/mL) and 55% (500 µg/mL).

2.
Materials (Basel) ; 14(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807068

RESUMO

NiTi shape memory alloys are increasingly being used as bone and cardiac implants. The oxide layer of nanometric thickness spontaneously formed on their surface does not sufficiently protect from nickel transition into surrounding tissues, and its presence, even in a small amount, can be harmful to the human organism. In order to limit this disadvantageous phenomenon, there are several surface engineering techniques used, including oxidation methods. Due to the usually complex shapes of implants, one of the most prospective methods is low-temperature plasma oxidation. This article presents the role of cathode sputtering in the formation of a titanium dioxide surface layer, specifically rutile. The surface of the NiTi shape memory alloy was modified using low-temperature glow discharge plasma oxidation processes, which were carried out in two variants: oxidation using an argon + oxygen (80% vol.) reactive atmosphere and the less chemically active argon + air (80% vol.), but with a preliminary cathode sputtering process in the Ar + N2 (1:1) plasma. This paper presents the structure (STEM), chemical composition (EDS, SIMS), surface topography (optical profilometer, Atomic Force Microscopy-AFM) and antibacterial properties of nanocrystalline TiO2 diffusive surface layers. It is shown that prior cathodic sputtering in argon-nitrogen plasma almost doubled the thickness of the produced nitrogen-doped titanium dioxide layers despite using air instead of oxygen. The (TiOxNy)2 diffusive surface layer showed a high level of resistance to E. coli colonization in comparison with NiTi, which indicates the possibility of using this surface layer in the modification of NiTi implants' properties.

3.
Nanomaterials (Basel) ; 11(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802987

RESUMO

The presented work shows the results of the functionalization of the graphene surface obtained by the growth on the liquid bimetallic matrices method. We used glutathione (GSH) as a peptide model, which allowed us to optimize the procedure to obtain high process efficiency. To establish the amount of GSH attached to the graphene surface, the Folina-Ciocalteu method was used, which allows the assessment of the concentration of colored reaction products with peptide bonds without the disadvantages of most methods based on direct colored reaction of peptide bonds. Samples surface morphology, quality of graphene and chemical structure in the subsequent stages of surface modification were tested-for this purpose Raman spectroscopy, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) were used.

4.
Materials (Basel) ; 13(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114571

RESUMO

Biological acceptance is one of the most important aspects of a biomaterial and forms the basis for its clinical use. The aim of this study was a comprehensive biological evaluation (cytotoxicity test, bacterial colonization test, blood platelets adhesion test and transcriptome and proteome analysis of Saos-2 cells after contact with surface of the biomaterial) of biomaterials used in spinal and orthopedic surgery, namely, Ti6Al4V ELI (Extra Low Interstitials), its modified version obtained as a result of melting by electron beam technology (Ti6Al4V ELI-EBT), polyether ether ketone (PEEK) and polished medical steel American Iron and Steel Institute (AISI) 316L (the reference material). Biological tests were carried out using the osteoblasts-like cells (Saos-2, ATCC HTB-85) and bacteria Escherichia coli (DH5α). Results showed lack of cytotoxicity of all materials and the surfaces of both Ti6Al4V ELI and PEEK exhibit a significantly higher resistance to colonization with E. coli cells, while the more porous surface of the same titanium alloy produced by electron beam technology (EBT) is more susceptible to microbial colonization than the control surface of polished medical steel. None of the tested materials showed high toxicity in relation to E. coli cells. Susceptibility to platelet adhesion was very high for polished medical steel AISI 316L, whilst much lower for the other biomaterials and can be ranked from the lowest to the highest as follows: PEEK < Ti6Al4V ELI < Ti6Al4V ELI-EBT. The number of expressed genes in Saos-2 cells exposed to contact with the examined biomaterials reached 9463 genes in total (ranging from 8455 genes expressed in cells exposed to ELI to 9160 genes in cells exposed to PEEK). Whereas the number of differentially expressed proteins detected on two-dimensional electrophoresis gels in Saos-2 cells after contact with the examined biomaterials was 141 for PEEK, 223 for Ti6Al4V ELI and 133 for Ti6Al4V ELI-EBT. Finally, 14 proteins with altered expression were identified by mass spectrometry. In conclusion, none of the tested biomaterials showed unsatisfactory levels of cytotoxicity. The gene and protein expression analysis, that represents a completely new approach towards characterization of these biomaterials, showed that the polymer PEEK causes much more intense changes in gene and protein expression and thus influences cell metabolism.

5.
Toxicol Mech Methods ; 28(6): 432-439, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29606030

RESUMO

Nematode Caenorhabditis elegans (C. elegans) was used to investigate the impact of silver nanoparticles (SNP), multiwalled carbon nanotubes (MWCNT), and polyamidoamine dendrimers (PAMAM) used in concentration of 1010 particle/mL. Population-based observations and gene expression analysis were employed in this study. SNP and PAMAM caused decrease in the number of live nematodes and their body length, but MWCNT did not affect the population of nematodes. Gene expression analysis revealed significant changes caused by the presence of all studied nanomaterials, and the results strongly suggest a specific metabolic response of the nematode organism to exposure to various nanomaterials. It was shown that C. elegans is a very sensitive organism capable to respond specifically to the exposure to some nanomaterials and therefore could be considered as a possible biosensor for early warning of presence of some nanoparticles.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Dendrímeros/toxicidade , Nanopartículas Metálicas/toxicidade , Nanotubos de Carbono/toxicidade , Prata/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dendrímeros/química , Biomarcadores Ambientais , Perfilação da Expressão Gênica , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Prata/química , Propriedades de Superfície
6.
J Biomater Appl ; 31(10): 1328-1336, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28517978

RESUMO

The aim of present study was to determine the hemocompatibility, cellular response of endothelial cells and bacterial adhesion to a new polyester nanocomposite. The carbon nanoparticle nanocomposite was prepared via in situ polymerization of monomers to obtain material of hardness 55 Sh D similar to polyurethanes used in medical applications, for example, in heart-assisting devices. The carbon nanoparticle-containing polyester exhibits markedly reduced bacterial colonization, as compared to commercially available polyurethanes. Further the nanocomposite possesses markedly improved hemocompatibility, as determined by flow cytometry, and robust endothelialization. Possible explanations for these beneficial properties include surface nanoroughness of carbon nanoparticle-containing nanocomposites and presence of fatty acid sequences within polymer structure.


Assuntos
Materiais Biocompatíveis/química , Carbono/química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Aderência Bacteriana , Carbono/metabolismo , Adesão Celular , Escherichia coli , Ácidos Graxos/química , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Teste de Materiais , Nanocompostos/microbiologia , Nanocompostos/toxicidade , Poliésteres/metabolismo , Poliuretanos/química , Propriedades de Superfície
7.
Mater Sci Eng C Mater Biol Appl ; 63: 462-74, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040240

RESUMO

Since the biological response of the body towards an implanted material is mainly governed by its surface properties, biomaterials are improved by various kinds of coatings. Their role is to provide good mechanical and biological characteristics, and exclude some disadvantages like post-implantation infections. This phenomenon may be reduced by introduction of silver as an antibacterial agent. This study evaluates the Ag-DLC films synthesized by the hybrid RF PACVD/MS method according to the patent number PL401955-A1 worked out inter alia by the authors. Such tests as XPS, SEM, EDS, AFM, FTIR, Raman and ICP-TOF-MS were used to determine surface properties of the coatings. The obtained results were correlated with the biological response estimated on the basis of cells viability assay (osteoblast cells line Saos-2) and bacterial colonization test (Escherichia coli strain DH5α). Results showed that the hybrid RF PACVD/MS method allows one to get tight coating preventing the diffusion of harmful elements from the metallic substrate. Ag concentration increases with the growing power density, it occurs in metallic state, does not create chemical bonds and is evenly dispersed within the DLC matrix in the form of nanoscale silver clusters. Increasing silver content above 2at.% improves bactericidal properties, but decreases cell viability.


Assuntos
Materiais Revestidos Biocompatíveis/química , Diamante/química , Prata/química , Carbono/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície
8.
Braz. arch. biol. technol ; 59: e16150305, 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-774487

RESUMO

The aim of this study was to examine the thrombogenic properties of polyurethane that was surface modified with carbon coatings. Physicochemical properties of manufactured coatings were investigated using transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy and contact angle measurement methods. Samples were examined by the Impact-R method evaluating the level of platelets activation and adhesion of particular blood cell elements. The analysis of antimicrobial resistance against E. coli colonization and viability of endothelial cells showed that polyurethane modified with use of carbon layers constituted an interesting solution for biomedical application.

9.
Braz. arch. biol. technol ; 58(2): 300-308, Mar-Apr/2015. graf
Artigo em Inglês | LILACS | ID: lil-744311

RESUMO

This work studied the susceptibility of biofilm produced by E. coli to oxidative stress, and compared the components of free radicals defences: level of glutathione, catalase and dismutase activities in planktonic and biofilm located cells. Results showed the diversity of responses to oxidative stress in bacterial cells in log or stationary phases in both planktonic and biofilm forms. The bacteria were exposed to free-radical donors (H2O2, tBOOH, menadione, SIN-1 or peroxynitrite) in a wide range of final concentrations, from 0.5 to 10mM. Different level of toxicity of individual donors, independence of cell type (planktonic forms or biofilm) and phases of growth were observed. The highest oxidative stress resistance was observed for the cells in logarithmic phase of growth treated with H2O2, both in planktonic and biofilm forms, whereas for the cells in stationary phase, the highest resistance was observed for menadione. These results showed higher efficiency of agents based on superoxide anion donors in combating bacteria colonizing abiotic surfaces stainless steel (AISI 316L).

10.
Acta Bioeng Biomech ; 11(3): 19-25, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20131746

RESUMO

The aim of the present work was to examine the interactions of parylene C with such selected biological objects as: blood plasma proteins, platelets, endothelial cells, and bacterial biofilm produced by E. coli cells. The results obtained strongly support the thesis that parylene C is a material worth considering for biomedical use. Parylene C coating on polished medical steel significantly reduces platelet adhesion to this surface. On the other hand, in the case of the surface of machined medical steel coated with parylene C, the number of adhered platelets is significantly higher. This also means that surface texture of substrate material is very well reproduced by parylene C coating and is an important factor facilitating the platelet adhesion. Adsorption of plasma proteins at parylene C surface is very effective, and this finding confirms a notion that cell interaction with surfaces is mediated by the adsorbed proteins. In the light of the above, a high susceptibility of parylene C surface to bacterial colonization is easy to explain. The results showing reduced proliferation and changes in endothelial cell gene expression should also be seriously analysed when parylene C is considered for the use in contact with blood vessels.


Assuntos
Materiais Biocompatíveis , Polímeros , Xilenos , Adsorção , Aderência Bacteriana , Materiais Biocompatíveis/química , Proteínas Sanguíneas/metabolismo , Adesão Celular , Linhagem Celular , Materiais Revestidos Biocompatíveis , Células Endoteliais/citologia , Escherichia coli/fisiologia , Humanos , Técnicas In Vitro , Teste de Materiais , Adesividade Plaquetária , Polímeros/química , Aço Inoxidável , Propriedades de Superfície , Xilenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...