Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G518-G527, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788332

RESUMO

Gut barrier dysfunction occurs commonly in patients with critical disorders, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Connexin 43 (Cx43) acts as a gap junction protein and is crucial for intercellular communication and the diffusion of nutrients. The levels of cellular Cx43 are tightly regulated by multiple factors, including polyamines, but the exact mechanism underlying the control of Cx43 expression remains largely unknown. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of intestinal epithelial pathobiology. Here we show that HuR directly bound to Cx43 mRNA via its 3'-untranslated region in intestinal epithelial cells (IECs) and this interaction enhanced Cx43 expression by stabilizing Cx43 mRNA. Depletion of cellular polyamines inhibited the [HuR/Cx43 mRNA] complex and decreased the level of Cx43 protein by destabilizing its mRNA, but these changes were prevented by ectopic overexpression of HuR. Polyamine depletion caused intestinal epithelial barrier dysfunction, which was reversed by ectopic Cx43 overexpression. Moreover, overexpression of checkpoint kinase 2 in polyamine-deficient cells increased the [HuR/Cx43 mRNA] complex, elevated Cx43 levels, and promoted barrier function. These findings indicate that Cx43 mRNA is a novel target of HuR in IECs and that polyamines regulate Cx43 mRNA stability via HuR, thus playing a critical role in the maintenance of intestinal epithelial barrier function.NEW & NOTEWORTHY The current study shows that polyamines stabilize the Cx43 mRNA via HuR, thus enhancing the function of the Cx43-mediated gap junction. These findings suggest that induced Cx43 by HuR plays a critical role in the process by which polyamines regulate intestinal epithelial barrier.


Assuntos
Conexina 43 , Proteína Semelhante a ELAV 1 , Poliaminas , RNA Mensageiro , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Mucosa Intestinal/metabolismo , Poliaminas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA
2.
Commun Med (Lond) ; 3(1): 81, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308534

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. METHODS: Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N = 437), we identified 413 higher plasma abundances of protein targets and 30 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p < 0.05). Of these, 62 proteins were validated in an external cohort (p < 0.05, N = 261). RESULTS: We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p < 0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. CONCLUSIONS: Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Acute kidney injury (AKI) is a sudden, sometimes fatal, episode of kidney failure or damage. It is a known complication of COVID-19, albeit through unclear mechanisms. COVID-19 is also associated with kidney dysfunction in the long term, or chronic kidney disease (CKD). There is a need to better understand which patients with COVID-19 are at risk of AKI or CKD. We measure levels of several thousand proteins in the blood of hospitalized COVID-19 patients. We discover and validate sets of proteins associated with severe AKI and CKD in these patients. The markers identified suggest that kidney injury in COVID-19 patients involves damage to kidney cells that reabsorb fluid from urine and reduced blood flow to the heart, causing damage to heart muscles. Our findings might help clinicians to predict kidney injury in patients with COVID-19, and to understand its mechanisms.

3.
Res Sq ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993735

RESUMO

Background Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Methods Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 higher plasma abundances of protein targets and 40 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). Results We demonstrate that COVID-AKI is associated with increased markers of tubular injury ( NGAL ) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2 , trefoil factor 3 , transmembrane emp24 domain-containing protein 10 , and cystatin-C indicating tubular dysfunction and injury. Conclusions Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.

4.
medRxiv ; 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36093350

RESUMO

Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Using measurements of ∼4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 higher plasma abundances of protein targets and 40 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.

5.
J Card Fail ; 28(9): 1475-1479, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691478

RESUMO

BACKGROUND: Patients with heart failure (HF) are at high risk for adverse outcomes when they have COVID-19. Reports of COVID-19 vaccine-related cardiac complications may contribute to vaccine hesitancy in patients with HF. METHODS: To analyze the impact of COVID-19 vaccine status on clinical outcomes in patients with HF, we conducted a retrospective cohort study of the association of COVID-19 vaccination status with hospitalizations, intensive care unit admission and mortality after adjustment for covariates. Inverse probability treatment-weighted models were used to adjust for potential confounding. RESULTS: Of 7094 patients with HF, 645 (9.1%) were partially vaccinated, 2200 (31.0%) were fully vaccinated, 1053 were vaccine-boosted (14.8%), and 3196 remained unvaccinated (45.1%) by January 2022. The mean age was 73.3 ± 14.5 years, and 48% were female. Lower mortality rates were observed in patients who were vaccine-boosted, followed by those who were fully vaccinated; they experienced lower mortality rates (HR 0.33; CI 0.23, 0.48) and 0.36 (CI 0.30, 0.43), respectively, compared to unvaccinated individuals (P< 0.001) over the mean follow-up time of 276.5 ± 104.9 days, whereas no difference was observed between those who were unvaccinated or only partially vaccinated. CONCLUSION: COVID-19 vaccination was associated with significant reduction in all-cause hospitalization rates and mortality rates, lending further evidence to support the importance of vaccination implementation in the high-risk population of patients living with HF.


Assuntos
COVID-19 , Insuficiência Cardíaca , Idoso , Idoso de 80 Anos ou mais , Vacinas contra COVID-19 , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
Eur Heart J Digit Health ; 3(1): 56-66, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35355847

RESUMO

Aims: Clinical scoring systems for pulmonary embolism (PE) screening have low specificity and contribute to computed tomography pulmonary angiogram (CTPA) overuse. We assessed whether deep learning models using an existing and routinely collected data modality, electrocardiogram (ECG) waveforms, can increase specificity for PE detection. Methods and results: We create a retrospective cohort of 21 183 patients at moderate- to high suspicion of PE and associate 23 793 CTPAs (10.0% PE-positive) with 320 746 ECGs and encounter-level clinical data (demographics, comorbidities, vital signs, and labs). We develop three machine learning models to predict PE likelihood: an ECG model using only ECG waveform data, an EHR model using tabular clinical data, and a Fusion model integrating clinical data and an embedded representation of the ECG waveform. We find that a Fusion model [area under the receiver-operating characteristic curve (AUROC) 0.81 ± 0.01] outperforms both the ECG model (AUROC 0.59 ± 0.01) and EHR model (AUROC 0.65 ± 0.01). On a sample of 100 patients from the test set, the Fusion model also achieves greater specificity (0.18) and performance (AUROC 0.84 ± 0.01) than four commonly evaluated clinical scores: Wells' Criteria, Revised Geneva Score, Pulmonary Embolism Rule-Out Criteria, and 4-Level Pulmonary Embolism Clinical Probability Score (AUROC 0.50-0.58, specificity 0.00-0.05). The model is superior to these scores on feature sensitivity analyses (AUROC 0.66-0.84) and achieves comparable performance across sex (AUROC 0.81) and racial/ethnic (AUROC 0.77-0.84) subgroups. Conclusion: Synergistic deep learning of ECG waveforms with traditional clinical variables can increase the specificity of PE detection in patients at least at moderate suspicion for PE.

7.
Patterns (N Y) ; 2(12): 100389, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723227

RESUMO

Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced. Conventional approaches in DL use cross-entropy loss (CEL), which often suffers from poor margin classification. We show that contrastive loss (CL) improves the performance of CEL, especially in imbalanced electronic health records (EHR) data for COVID-19 analyses. We use a diverse EHR dataset to predict three outcomes: mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over multiple time windows. To compare the performance of CEL and CL, models are tested on the full dataset and a restricted dataset. CL models consistently outperform CEL models, with differences ranging from 0.04 to 0.15 for area under the precision and recall curve (AUPRC) and 0.05 to 0.1 for area under the receiver-operating characteristic curve (AUROC).

8.
J Am Heart Assoc ; 10(22): e021916, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34713709

RESUMO

Background Despite advances in cardiovascular disease and risk factor management, mortality from ischemic heart failure (HF) in patients with coronary artery disease (CAD) remains high. Given the partial role of genetics in HF and lack of reliable risk stratification tools, we developed and validated a polygenic risk score for HF in patients with CAD, which we term HF-PRS. Methods and Results Using summary statistics from a recent genome-wide association study for HF, we developed candidate PRSs in the Mount Sinai BioMe CAD patient cohort (N=6274) by using the pruning and thresholding method and LDPred. We validated the best score in the Penn Medicine BioBank (N=7250) and performed a subgroup analysis in a high-risk cohort who had undergone coronary catheterization. We observed a significant association between HF-PRS score and ischemic HF even after adjusting for evidence of obstructive CAD in patients of European ancestry in both BioMe (odds ratio [OR], 1.14 per SD; 95% CI, 1.05-1.24; P=0.003) and Penn Medicine BioBank (OR, 1.07 per SD; 95% CI, 1.01-1.13; P=0.016). In European patients with CAD in Penn Medicine BioBank who had undergone coronary catheterization, individuals in the top 10th percentile of PRS had a 2-fold increased odds of ischemic HF (OR, 2.0; 95% CI, 1.1-3.7; P=0.02) compared with the bottom 10th percentile. Conclusions A PRS for HF enables risk stratification in patients with CAD. Future prospective studies aimed at demonstrating clinical utility are warranted for adoption in the patient setting.


Assuntos
Insuficiência Cardíaca , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Humanos , Herança Multifatorial , Estudos Prospectivos , Fatores de Risco
9.
Commun Biol ; 4(1): 1112, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552204

RESUMO

Identifying genomic alterations of cancer proteins has guided the development of targeted therapies, but proteomic analyses are required to validate and reveal new treatment opportunities. Herein, we develop a new algorithm, OPPTI, to discover overexpressed kinase proteins across 10 cancer types using global mass spectrometry proteomics data of 1,071 cases. OPPTI outperforms existing methods by leveraging multiple co-expressed markers to identify targets overexpressed in a subset of tumors. OPPTI-identified overexpression of ERBB2 and EGFR proteins correlates with genomic amplifications, while CDK4/6, PDK1, and MET protein overexpression frequently occur without corresponding DNA- and RNA-level alterations. Analyzing CRISPR screen data, we confirm expression-driven dependencies of multiple currently-druggable and new target kinases whose expressions are validated by immunochemistry. Identified kinases are further associated with up-regulated phosphorylation levels of corresponding signaling pathways. Collectively, our results reveal protein-level aberrations-sometimes not observed by genomics-represent cancer vulnerabilities that may be targeted in precision oncology.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Quinases/genética , Proteogenômica/métodos , Regulação para Cima , Adulto , Idoso , Algoritmos , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/fisiopatologia , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais
10.
medRxiv ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341802

RESUMO

Federated learning is a technique for training predictive models without sharing patient-level data, thus maintaining data security while allowing inter-institutional collaboration. We used federated learning to predict acute kidney injury within three and seven days of admission, using demographics, comorbidities, vital signs, and laboratory values, in 4029 adults hospitalized with COVID-19 at five sociodemographically diverse New York City hospitals, between March-October 2020. Prediction performance of federated models was generally higher than single-hospital models and was comparable to pooled-data models. In the first use-case in kidney disease, federated learning improved prediction of a common complication of COVID-19, while preserving data privacy.

12.
Sci Rep ; 11(1): 12107, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103633

RESUMO

Effective treatments targeting disease etiology are urgently needed for Alzheimer's disease (AD). Although candidate AD genes have been identified and altering their levels may serve as therapeutic strategies, the consequence of such alterations remain largely unknown. Herein, we analyzed CRISPR knockout/RNAi knockdown screen data for over 700 cell lines and evaluated cellular dependencies of 104 AD-associated genes previously identified by genome-wide association studies (GWAS) and gene expression network studies. Multiple genes showed widespread cell dependencies across tissue lineages, suggesting their inhibition may yield off-target effects. Meanwhile, several genes including SPI1, MEF2C, GAB2, ABCC11, ATCG1 were identified as genes of interest since their genetic knockouts specifically affected high-expressing cells whose tissue lineages are relevant to cell types found in AD. Overall, analyses of genetic screen data identified AD-associated genes whose knockout or knockdown selectively affected cell lines of relevant tissue lineages, prioritizing targets for potential AD treatments.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Sistemas CRISPR-Cas , Predisposição Genética para Doença , Transportadores de Cassetes de Ligação de ATP/genética , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem da Célula , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Fatores de Transcrição MEF2/genética , Microglia/metabolismo , Doenças do Sistema Nervoso/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Risco , Transativadores/genética
13.
Infection ; 49(5): 989-997, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34089483

RESUMO

PURPOSE: Limited mechanical ventilators (MV) during the Coronavirus disease (COVID-19) pandemic have led to the use of non-invasive ventilation (NIV) in hypoxemic patients, which has not been studied well. We aimed to assess the association of NIV versus MV with mortality and morbidity during respiratory intervention among hypoxemic patients admitted with COVID-19. METHODS: We performed a retrospective multi-center cohort study across 5 hospitals during March-April 2020. Outcomes included mortality, severe COVID-19-related symptoms, time to discharge, and final oxygen saturation (SpO2) at the conclusion of the respiratory intervention. Multivariable regression of outcomes was conducted in all hypoxemic participants, 4 subgroups, and propensity-matched analysis. RESULTS: Of 2381 participants with laboratory-confirmed SARS-CoV-2, 688 were included in the study who were hypoxemic upon initiation of respiratory intervention. During the study period, 299 participants died (43%), 163 were admitted to the ICU (24%), and 121 experienced severe COVID-19-related symptoms (18%). Participants on MV had increased mortality than those on NIV (128/154 [83%] versus 171/534 [32%], OR = 30, 95% CI 16-60) with a mean survival of 6 versus 15 days, respectively. The MV group experienced more severe COVID-19-related symptoms [55/154 (36%) versus 66/534 (12%), OR = 4.3, 95% CI 2.7-6.8], longer time to discharge (mean 17 versus 7.1 days), and lower final SpO2 (92 versus 94%). Across all subgroups and propensity-matched analysis, MV was associated with a greater OR of death than NIV. CONCLUSIONS: NIV was associated with lower respiratory intervention mortality and morbidity than MV. However, findings may be liable to unmeasured confounding and further study from randomized controlled trials is needed to definitively determine the role of NIV in hypoxemic patients with COVID-19.


Assuntos
COVID-19 , Ventilação não Invasiva , Estudos de Coortes , Humanos , Respiração Artificial , Estudos Retrospectivos , SARS-CoV-2
14.
Clin J Am Soc Nephrol ; 16(8): 1158-1168, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031183

RESUMO

BACKGROUND AND OBJECTIVES: AKI treated with dialysis initiation is a common complication of coronavirus disease 2019 (COVID-19) among hospitalized patients. However, dialysis supplies and personnel are often limited. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Using data from adult patients hospitalized with COVID-19 from five hospitals from the Mount Sinai Health System who were admitted between March 10 and December 26, 2020, we developed and validated several models (logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO), random forest, and eXtreme GradientBoosting [XGBoost; with and without imputation]) for predicting treatment with dialysis or death at various time horizons (1, 3, 5, and 7 days) after hospital admission. Patients admitted to the Mount Sinai Hospital were used for internal validation, whereas the other hospitals formed part of the external validation cohort. Features included demographics, comorbidities, and laboratory and vital signs within 12 hours of hospital admission. RESULTS: A total of 6093 patients (2442 in training and 3651 in external validation) were included in the final cohort. Of the different modeling approaches used, XGBoost without imputation had the highest area under the receiver operating characteristic (AUROC) curve on internal validation (range of 0.93-0.98) and area under the precision-recall curve (AUPRC; range of 0.78-0.82) for all time points. XGBoost without imputation also had the highest test parameters on external validation (AUROC range of 0.85-0.87, and AUPRC range of 0.27-0.54) across all time windows. XGBoost without imputation outperformed all models with higher precision and recall (mean difference in AUROC of 0.04; mean difference in AUPRC of 0.15). Features of creatinine, BUN, and red cell distribution width were major drivers of the model's prediction. CONCLUSIONS: An XGBoost model without imputation for prediction of a composite outcome of either death or dialysis in patients positive for COVID-19 had the best performance, as compared with standard and other machine learning models. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2021_07_09_CJN17311120.mp3.


Assuntos
Injúria Renal Aguda/terapia , COVID-19/complicações , Aprendizado de Máquina , Diálise Renal , SARS-CoV-2 , Injúria Renal Aguda/mortalidade , COVID-19/mortalidade , Hospitalização , Humanos
16.
PLoS One ; 16(2): e0247366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626098

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated Coronavirus Disease 2019 (COVID-19) is a public health emergency. Acute kidney injury (AKI) is a common complication in hospitalized patients with COVID-19 although mechanisms underlying AKI are yet unclear. There may be a direct effect of SARS-CoV-2 virus on the kidney; however, there is currently no data linking SARS-CoV-2 viral load (VL) to AKI. We explored the association of SARS-CoV-2 VL at admission to AKI in a large diverse cohort of hospitalized patients with COVID-19. METHODS AND FINDINGS: We included patients hospitalized between March 13th and May 19th, 2020 with SARS-CoV-2 in a large academic healthcare system in New York City (N = 1,049) with available VL at admission quantified by real-time RT-PCR. We extracted clinical and outcome data from our institutional electronic health records (EHRs). AKI was defined by KDIGO guidelines. We fit a Fine-Gray competing risks model (with death as a competing risk) using demographics, comorbidities, admission severity scores, and log10 transformed VL as covariates and generated adjusted hazard ratios (aHR) and 95% Confidence Intervals (CIs). VL was associated with an increased risk of AKI (aHR = 1.04, 95% CI: 1.01-1.08, p = 0.02) with a 4% increased hazard for each log10 VL change. Patients with a viral load in the top 50th percentile had an increased adjusted hazard of 1.27 (95% CI: 1.02-1.58, p = 0.03) for AKI as compared to those in the bottom 50th percentile. CONCLUSIONS: VL is weakly but significantly associated with in-hospital AKI after adjusting for confounders. This may indicate the role of VL in COVID-19 associated AKI. This data may inform future studies to discover the mechanistic basis of COVID-19 associated AKI.


Assuntos
Injúria Renal Aguda/virologia , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Injúria Renal Aguda/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/metabolismo , COVID-19/mortalidade , Estudos de Coortes , Comorbidade , Feminino , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Carga Viral
17.
Blood Purif ; 50(4-5): 621-627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631752

RESUMO

BACKGROUND/AIMS: Acute kidney injury (AKI) in critically ill patients is common, and continuous renal replacement therapy (CRRT) is a preferred mode of renal replacement therapy (RRT) in hemodynamically unstable patients. Prediction of clinical outcomes in patients on CRRT is challenging. We utilized several approaches to predict RRT-free survival (RRTFS) in critically ill patients with AKI requiring CRRT. METHODS: We used the Medical Information Mart for Intensive Care (MIMIC-III) database to identify patients ≥18 years old with AKI on CRRT, after excluding patients who had ESRD on chronic dialysis, and kidney transplantation. We defined RRTFS as patients who were discharged alive and did not require RRT ≥7 days prior to hospital discharge. We utilized all available biomedical data up to CRRT initiation. We evaluated 7 approaches, including logistic regression (LR), random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), multilayer perceptron (MLP), and MLP with long short-term memory (MLP + LSTM). We evaluated model performance by using area under the receiver operating characteristic (AUROC) curves. RESULTS: Out of 684 patients with AKI on CRRT, 205 (30%) patients had RRTFS. The median age of patients was 63 years and their median Simplified Acute Physiology Score (SAPS) II was 67 (interquartile range 52-84). The MLP + LSTM showed the highest AUROC (95% CI) of 0.70 (0.67-0.73), followed by MLP 0.59 (0.54-0.64), LR 0.57 (0.52-0.62), SVM 0.51 (0.46-0.56), AdaBoost 0.51 (0.46-0.55), RF 0.44 (0.39-0.48), and XGBoost 0.43 (CI 0.38-0.47). CONCLUSIONS: A MLP + LSTM model outperformed other approaches for predicting RRTFS. Performance could be further improved by incorporating other data types.


Assuntos
Injúria Renal Aguda/terapia , Terapia de Substituição Renal , Injúria Renal Aguda/diagnóstico , Fatores Etários , Idoso , Cuidados Críticos , Feminino , Humanos , Modelos Logísticos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Prognóstico
18.
JMIR Med Inform ; 9(1): e24207, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33400679

RESUMO

BACKGROUND: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. OBJECTIVE: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. METHODS: Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. RESULTS: The LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals. CONCLUSIONS: The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.

19.
ArXiv ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33442560

RESUMO

Machine Learning (ML) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing ML models for the coronavirus-disease 2019 (COVID-19) pandemic where data is highly imbalanced, particularly within electronic health records (EHR) research. Conventional approaches in ML use cross-entropy loss (CEL) that often suffers from poor margin classification. For the first time, we show that contrastive loss (CL) improves the performance of CEL especially for imbalanced EHR data and the related COVID-19 analyses. This study has been approved by the Institutional Review Board at the Icahn School of Medicine at Mount Sinai. We use EHR data from five hospitals within the Mount Sinai Health System (MSHS) to predict mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over 24 and 48 hour time windows. We train two sequential architectures (RNN and RETAIN) using two loss functions (CEL and CL). Models are tested on full sample data set which contain all available data and restricted data set to emulate higher class imbalance.CL models consistently outperform CEL models with the restricted data set on these tasks with differences ranging from 0.04 to 0.15 for AUPRC and 0.05 to 0.1 for AUROC. For the restricted sample, only the CL model maintains proper clustering and is able to identify important features, such as pulse oximetry. CL outperforms CEL in instances of severe class imbalance, on three EHR outcomes with respect to three performance metrics: predictive power, clustering, and feature importance. We believe that the developed CL framework can be expanded and used for EHR ML work in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...