Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(9): e108181, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265511

RESUMO

Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-ß-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with Kd and Amax values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Trichoderma/enzimologia , Domínio Catalítico , Ligação Proteica
2.
J Biol Chem ; 287(34): 28802-15, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22733813

RESUMO

Synergistic cooperation of different enzymes is a prerequisite for efficient degradation of cellulose. The conventional mechanistic interpretation of the synergism between randomly acting endoglucanases (EGs) and chain end-specific processive cellobiohydrolases (CBHs) is that EG-generated new chain ends on cellulose surface serve as starting points for CBHs. Here we studied the hydrolysis of bacterial cellulose (BC) by CBH TrCel7A and EG TrCel5A from Trichoderma reesei under both single-turnover and "steady state" conditions. Unaccountable by conventional interpretation, the presence of EG increased the rate constant of TrCel7A-catalyzed hydrolysis of BC in steady state. At optimal enzyme/substrate ratios, the "steady state" rate of synergistic hydrolysis became limited by the velocity of processive movement of TrCel7A on BC. A processivity value of 66 ± 7 cellobiose units measured for TrCel7A on (14)C-labeled BC was close to the leveling off degree of polymerization of BC, suggesting that TrCel7A cannot pass through the amorphous regions on BC and stalls. We propose a mechanism of endo-exo synergism whereby the degradation of amorphous regions by EG avoids the stalling of TrCel7A and leads to its accelerated recruitment. Hydrolysis of pretreated wheat straw suggested that this mechanism of synergism is operative also in the degradation of lignocellulose. Although both mechanisms of synergism are used in parallel, the contribution of conventional mechanism is significant only at high enzyme/substrate ratios.


Assuntos
Bactérias/química , Celobiose/química , Celulase/química , Proteínas Fúngicas/química , Trichoderma/enzimologia , Hidrólise , Especificidade por Substrato/fisiologia
3.
Biotechnol Bioeng ; 106(6): 871-83, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20506147

RESUMO

Despite intensive research, the mechanism of the rapid retardation in the rates of cellobiohydrolase (CBH) catalyzed cellulose hydrolysis is still not clear. Interpretation of the hydrolysis data has been complicated by the inability to measure the catalytic constants for CBH-s acting on cellulose. We developed a method for measuring the observed catalytic constant (k(obs)) for CBH catalyzed cellulose hydrolysis. It relies on in situ measurement of the concentration of CBH with the active site occupied by the cellulose chain. For that we followed the specific inhibition of the hydrolysis of para-nitrophenyl-beta-D-lactoside by cellulose. The method was applied to CBH-s TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium and their isolated catalytic domains. Bacterial microcrystalline cellulose, Avicel, amorphous cellulose, and lignocellulose were used as substrates. A rapid decrease of k(obs) in time was observed on all substrates. The k(obs) values for PcCel7D were about 1.5 times higher than those for TrCel7A. In case of both TrCel7A and PcCel7D, the k(obs) values for catalytic domains were similar to those for intact enzymes. A model where CBH action is limited by the average length of obstacle-free way on cellulose chain is proposed. Once formed, productive CBH-cellulose complex proceeds with a constant rate determined by the true catalytic constant. After encountering an obstacle CBH will "get stuck" and the rate of further cellulose hydrolysis will be governed by the dissociation rate constant (k(off)), which is low for processive CBH-s.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Phanerochaete/enzimologia , Trichoderma/enzimologia , Domínio Catalítico , Glicosídeos/metabolismo , Hidrólise , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...