Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 692: 115574, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38782251

RESUMO

Ascorbic acid (AA), a prominent antioxidant commonly found in human blood serum, serves as a biomarker for assessing oxidative stress levels. Therefore, precise detection of AA is crucial for swiftly diagnosing conditions arising from abnormal AA levels. Consequently, the primary aim of this research is to develop a sensitive and selective electrochemical sensor for accurate AA determination. To accomplish this aim, we used a novel nanocomposite comprised of CeO2-doped ZnO adorned on biomass-derived carbon (CeO2·ZnO@BC) as the active nanomaterial, effectively fabricating a glassy carbon electrode (GCE). Various analytical techniques were employed to scrutinize the structure and morphology features of the CeO2·ZnO@BC nanocomposite, ensuring its suitability as the sensing nanomaterial. This innovative sensor is capable of quantifying a wide range of AA concentrations, spanning from 0.5 to 1925 µM in a neutral phosphate buffer solution. It exhibits a remarkable sensitivity of 0.2267 µA µM-1cm-2 and a practical detection limit of 0.022 µM. Thanks to its exceptional sensitivity and selectivity, this sensor enables highly accurate determination of AA concentrations in real samples. Moreover, its superior reproducibility, repeatability, and stability underscore its reliability and robustness for AA quantification.


Assuntos
Ácido Ascórbico , Carbono , Cério , Técnicas Eletroquímicas , Nanocompostos , Óxido de Zinco , Ácido Ascórbico/análise , Ácido Ascórbico/química , Ácido Ascórbico/sangue , Nanocompostos/química , Óxido de Zinco/química , Técnicas Eletroquímicas/métodos , Cério/química , Carbono/química , Humanos , Biomassa , Eletrodos , Limite de Detecção
2.
Nanoscale Adv ; 6(6): 1750-1764, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482029

RESUMO

Nano-carbon-reinforced polymer composites have gained much consideration in functional applications due to their attractive mechanical strength and cost-effectiveness. The surface chemistry and associated mechanical strength of carbon nanotubes (CNTs), graphene, and other carbon derivative-based nanocomposites are well understood. While CQDs are considered emerging carbon derivatives, their surface chemistry, unique physio-chemical properties, and dispersion behavior in polymers are yet to be explored. Therefore, in this work, CQDs with different structures were synthesized from lemon pulp and urea, and their rheology and mechanical strength were studied in the PVA matrix. The surface chemistry and structure of CQDs were controlled using different solvents and reaction temperatures, respectively. CQDs possessed a circular shape, with a size of <10 nm, having a suitable carbon core and functional groups, as confirmed by TEM and FTIR spectroscopy. The dynamic viscosity and particle size of PVA/CQDs films peaked at 4% inclusion due to the maximum crosslinking of U-CQDs with reinforcement at 180 °C. Compared with pure PVA, the optimized composite showed an 80% larger particle size with 67% better tensile strength at 4% U-CQDs concentration. In addition to enhanced mechanical strength, CQDs exhibited antibacterial activity in composites. These CQDs-reinforced PVA composites may be suitable for different functional textile applications (shape memory composites and photo-active textiles).

3.
RSC Adv ; 14(9): 5959-5974, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362070

RESUMO

Heavy metal contamination in water is a serious environmental issue due to the toxicity of metals like lead. This study developed zeolite and multi-walled carbon nanotube (MWCNT) incorporated polyacrylonitrile (PAN) nanofibers via needleless electrospinning and examined their potential for lead ion adsorption from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) and artificial neural network (ANN) modeling approaches. The adsorbent displayed efficient lead removal of 84.75% under optimum conditions (adsorbent dose (2.21 g), adsorption time (207 min), temperature (48 °C), and initial concentration (62 ppm)). Kinetic studies revealed that the adsorption followed pseudo-first-order kinetics governed by interparticle diffusion. Isotherm analysis indicated Langmuir monolayer adsorption with improved 5.90 mg g-1 capacity compared to pristine PAN nanofibers. Thermodynamic parameters suggested the adsorption was spontaneous and endothermic. This work demonstrates the promise of electrospun zeolite/MWCNT nanofibers as adsorbents for removing lead from wastewater.

4.
ACS Omega ; 9(5): 5265-5272, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343923

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that may contaminate various water sources and pose serious dangers to human health and the environment. Due to their capacity for size-based separation, nanofiltration membranes have become efficient instruments for PAH removal. However, issues such as membrane fouling and ineffective rejection still exist. To improve PAH rejection while reducing fouling problems, this work created a new gradient cross-linking poly(vinylpyrrolidone) (PVP) nanofiltration membrane. The gradient cross-linking technique enhanced the rejection performance and antifouling characteristics of the membrane. The results demonstrated that the highest membrane flow was achieved at a 0.15% SDS-PVP membrane. There is a trade-off between membrane flux and salt rejection since salt rejection increases with SDS owing to the growth of big pores. The membrane flux was reduced for the 0.25% SDS-PVP membrane owing to poor SDS dispersion. The prepared membrane showed enhanced removal efficiencies for the removal of the PAH compounds. The PVP membrane has the potential to be used in several water treatment applications, improving water quality, and preserving the environment.

5.
Environ Pollut ; 344: 123370, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244902

RESUMO

Wastewater treatment plants (WWTPs) usually contain microplastics (MPs) due to daily influents of domestic and municipal wastewater. Thus, the WWTPs act as a point source of MPs distribution in the environment due to their incapability to remove MPs completely. In this study, MPs occurrence and distribution in anaerobic sludge from WWTPs in different regions (Kaifeng "KHP", Jinan "JSP", and Lanzhou "LGP") were studied. Followed by MPs identification by microscopy and Fourier transform infrared (FTIR) spectrum. The microbial communities associated with anaerobic sludge and MPs were also explored. The results showed that MPs concentrations were 16.5, 38.5, and 17.2 particles/g of total solids (TS) and transparent MPs accounted for 49.1%, 58.5%, and 48.3% in KHP, JSP, and LGP samples, respectively. Fibers represented the most common shape of MPs in KHP (49.1%), JSP (56.0%), and LGP (69.0%). The FTIR spectroscopy indicated the predominance of polyethylene polymer in 1-5 mm MPs. The Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Planctomycetes were the abundant phyla in all anaerobic sludge. The bacterial genera in KHP and LGP were similar, in which Caldilinea (>23%), Terrimonas (>10%), and Ferruginibacter (>7%) formed the core bacterial genera. While Rhodococcus (15.3%) and Rhodoplanes (10.9%) were dominating in JSP. The archaeal genera Methanosaeta (>69%) and Methanobrevibacter (>10%) were abundant in KHP and LGP sludge. While Methanomethylovorans accounted for 90% of JSP. Acetyltransferase and hydratase were the major bacterial enzymes, while reductase was the key archaeal enzyme in all anaerobic sludge. This study provided the baseline for MPs distribution, characterization, and MPs associated microbes in WWTPs.


Assuntos
Chloroflexi , Microbiota , Esgotos , Anaerobiose , Microplásticos , Plásticos , Archaea , Bacteroidetes
6.
ACS Omega ; 8(50): 47623-47634, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144129

RESUMO

Even low concentrations of pollutants in water, particularly heavy metals, can significantly affect the ecosystem and human health. Adsorption has been determined to be one of the most effective techniques of removing pollution from wastewater among the various strategies. To remove heavy metals such as Zn2+ and Pb2+, we prepared a silica-coated CuMgFe2O4 magnetic adsorbent using sol-gel method and tested it for wastewater treatment. X-ray diffraction investigation validated the creation of cubic spinel structure, while morphological analysis showed that silica coating reduces the particle size but boosts the surface roughness of the nanoparticles and also reduces the agglomeration between particles. UV-visible spectroscopy indicates a rise in bandgap and magnetic characteristics analysis indicates low values of magnetization due to silica coating. The kinetic and isotherm parameters for heavy metal ions adsorption onto silica-coated Cu0.50Mg0.50Fe2O4 nanoparticles are calculated by applying pseudo-first-order, pseudo-second-order, Langmuir and Freundlich models. Adsorption kinetics revealed that the pseudo-second-order and Langmuir models are the best fit to explain adsorption kinetics. Synthesized adsorbent revealed 92% and 97% removal efficiencies for Zn2+ and Pb2+ ions, respectively.

7.
World J Microbiol Biotechnol ; 40(1): 12, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953333

RESUMO

The presence of harmful heavy metals (HMs) in the aquatic environment can damage the environment and threaten human health. Traditional remediation techniques can have secondary impacts. Thus, more sustainable approaches must be developed. Microalgae have biological properties (such as high photosynthetic efficiency and growth), which are of great advantage in the HMs removal. In this study, the effect of various concentrations (2×, 4×, and 6×) of copper (Cu), cobalt (Co), and zinc (Zn) on microalgae (C. sorokiniana GEEL-01, P. kessleri GEEL-02, D. asymmetricus GEEL-05) was investigated. The microalgal growth kinetics, HMs removal, total nitrogen (TN), total phosphor (TP), and fatty acids (FAs) compositions were analyzed. The highest growth of 1.474 OD680nm and 1.348 OD680nm was obtained at 2× and 4×, respectively, for P. kessleri GEEL-02. P. kessleri GEEL-02 showed high removal efficiency of Cu, Co, and Zn (38.92-55.44%), (36.27-68.38%), and (32.94-51.71%), respectively. Fatty acids (FAs) analysis showed that saturated FAs in C. sorokiniana GEEL-01 and P. kessleri GEEL-02 increased at 2× and 4× concentrations while decreasing at 6×. For P. kessleri GEEL-02, the properties of biodiesel including the degree of unsaturation (UD) and cetane value (CN) increased at 2×, 4×, and 6× as compared to the control. Thus, this study demonstrated that the three microalgae (particularly P. kessleri GEEL-02) are more suitable for nutrient and HMs removal coupled with biomass/biodiesel production.


Assuntos
Metais Pesados , Microalgas , Humanos , Ácidos Graxos/análise , Biomassa , Biocombustíveis , Nutrientes/análise , Suplementos Nutricionais/análise
8.
ACS Omega ; 8(20): 17976-17982, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251157

RESUMO

Recently, polyvinyl chloride (PVC) gel materials appeared promising for developing actuators, artificial muscles, and sensors. However, their energized response time and recovery limitations restrict their broader applications. Herein, a novel soft composite gel was prepared by mixing functionalized carboxylated cellulose nanocrystals (CCNs) and plasticized PVC. The surface morphology of the plasticized PVC/CCNs composite gel was characterized by scanning electronic microscopy (SEM). The prepared PVC/CCNs gel composites have increased polarity and electrical actuation with a fast response time. Experimental results demonstrated good response characteristics within the actuator model with a multilayer electrode structure when stimulated with a specified DC voltage (1000 V), with deformation of approximately 36.7%. Moreover, this PVC/CCNs gel has excellent tensile elongation, and the elongation at break of the PVC/CCNs gel is greater than the elongation at break of the pure PVC gel under the same thickness conditions. However, these PVC/CCNs composite gels showed excellent properties and development potential and are directed for broad applications in actuators, soft-robotics, and biomedical applications.

9.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049240

RESUMO

Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications.

10.
Environ Sci Pollut Res Int ; 30(22): 61710-61725, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933133

RESUMO

Appropriate material selection and proper understanding of bandgap modification are key factors for the development of efficient photocatalysts. Herein, we developed an efficient, well-organized visible light oriented photocatalyst based on g-C3N4 in association with polymeric network of chitosan (CTSN) and platinum (Pt) nanoparticles utilizing a straightforward chemical approach. Modern techniques like XRD, XPS, TEM, FESEM, UV-Vis, and FTIR spectroscopy were exploited for characterization of synthesized materials. XRD results confirmed the involvement of α-polymorphic form of CTSN in graphitic carbon nitride. XPS investigation confirmed the establishment of trio photocatalytic structure among Pt, CTSN, and g-C3N4. TEM examination showed that the synthesized g-C3N4 possesses fine fluffy sheets like structure (100 to 500 nm in size) intermingled with a dense layered framework of CTSN with good dispersion of Pt nanoparticles on g-C3N4 and CTSN composite structure. The bandgap energies for g-C3N4, CTSN/g-C3N4, and Pt@ CTSN/g-C3N4 photocatalysts were found to be 2.94, 2.73, and 2.72 eV, respectively. The photodegradation skills of each created structure have been examined on antibiotic gemifloxacin mesylate and methylene blue (MB) dye. The newly developed Pt@CTSN/g-C3N4 ternary photocatalyst was found to be efficacious for the elimination of gemifloxacin mesylate (93.3%) in 25 min and MB (95.2%) just in 18 min under visible light. Designed Pt@CTSN/g-C3N4 ternary photocatalytic framework exhibited ⁓ 2.20 times more effective than bare g-C3N4 for the destruction of antibiotic drug. This study provides a simple route towards the designing of rapid, effective visible light oriented photocatalyts for the existing environmental issues.


Assuntos
Quitosana , Nanopartículas , Antibacterianos/química , Gemifloxacina , Azul de Metileno/química , Platina , Catálise , Luz
11.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987136

RESUMO

Nowadays, synthetic polymers are used in medical applications due to their special biodegradable, biocompatible, hydrophilic, and non-toxic properties. The materials, which can be used for wound dressing fabrication with controlled drug release profile, are the need of the time. The main aim of this study was to develop and characterize polyvinyl alcohol/polycaprolactone (PVA/PCL) fibres containing a model drug. A dope solution comprising PVA/PCL with the drug was extruded into a coagulation bath and became solidified. The developed PVA/PCL fibres were then rinsed and dried. These fibres were tested for Fourier transform infrared spectroscopy, linear density, topographic analysis, tensile properties, liquid absorption, swelling behaviour, degradation, antimicrobial activity, and drug release profile for improved and better healing of the wound. From the results, it was concluded that PVA/PCL fibres containing a model drug can be produced by using the wet spinning technique and have respectable tensile properties; adequate liquid absorption, swelling %, and degradation %; and good antimicrobial activity with the controlled drug release profile of the model drug for wound dressing applications.

12.
Membranes (Basel) ; 13(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36837659

RESUMO

Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24° water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/s). AI-incorporated nanofiber membrane can effectively be used for facial mask application.

13.
PLoS One ; 17(12): e0279101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520952

RESUMO

Internal Combustion (IC) engines are prevalent in the process sector, and maintaining sufficient Air-Fuel Ratio (AFR) regulation in their fuel system is crucial for enhanced engine performance, fuel economy, and environmental safety. Faults in the AFR system's sensors cause the engine to shut down, hence, fault tolerance is essential. In order to avoid engine shutdown, this paper offers a novel Active Fault-Tolerant Control System (AFTCS) for air-fuel ratio control of an Internal Combustion (IC) engine in a process plant. In the Fault Detection and Isolation (FDI) unit, the proposed AFTCS uses a nonlinear regression-based observer model for analytical redundancy. The suggested system was simulated in the MATLAB / Simulink environment. The proposed system was tested at two different speeds (300 r/min and 600 r/min) and the results show that the system's response is within the acceptable bound without compromising the stability. The findings also demonstrate the higher fault tolerance capability for sensor defects of the AFR control system, particularly for the MAP sensor (at 300 r/min) in terms of reduced oscillatory response in comparison to the current literature. Compared to the linear regression-based and Genetic Algorithm (GA) based model, the nonlinear regression-based model results in a more accurate estimation of the faulty sensors. The proposed model is also efficient in terms of computation power and response time.


Assuntos
Tolerância Imunológica , Registros , Modelos Lineares , Tolerância a Medicamentos , Tempo de Reação
14.
Membranes (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36557137

RESUMO

Sweat is a natural body excretion produced by skin glands, and the body cools itself by releasing salty sweat. Wetness in the underarms and feet for long durations causes itchiness and an unpleasant smell. Skin-friendly reusable sweat pads could be used to absorb sweat. Transportation of moisture and functionality is the current challenge that many researchers are working on. This study aims to develop a functional and breathable sweat pad with antimicrobial and quick drying performance. Three layered functional sweat pads (FSP) are prepared in which the inner layer is made of an optimized needle-punched coolmax/polypropylene nonwoven blend. This layer is then dipped in antimicrobial ZnO solution (2, 4, and 6 wt.%), and super absorbent polymer (SAP) is embedded, and this is called a functional nonwoven (FNW1) sheet. Electrospun nanofiber-based nanomembranes of polyamide-6 are optimized for bead-free fibers. They are used as a middle layer to enhance the pad's functionality, and the third layer is again made of needle-punched optimized coolmax/polypropylene nonwoven sheets. A simple nonwoven-based sweat pad (SSP) is also prepared for comparison purposes. Nonwoven sheets are optimized based on better comfort properties, including air/water vapor permeability and moisture management (MMT). Nonwoven webs having a higher proportion of coolmax show better air permeability and moisture transfer from the inner to the outer layer. Antimicrobial activity of the functional nonwoven layer showed 8 mm of bacterial growth, but SSP and FSP showed only 6 mm of growth against Staphylococcus aureus. FSP showed superior comfort and antibacterial properties. This study could be a footstone toward highly functional sweat pads with remarkable comfort properties.

15.
Biosensors (Basel) ; 12(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36354499

RESUMO

In this study, a selective 4-nitrophenol (4-NP) sensor was developed onto a glassy carbon electrode (GCE) as an electron-sensing substrate, which decorated with sol-gel, prepared Pt nanoparticles- (NPs) embedded polypyrole-carbon black (PPy-CB)/ZnO nanocomposites (NCs) using differential pulse voltammetry. Characterizations of the NCs were performed using Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Ultraviolet-visible Spectroscopy (UV-vis), Fourier Transform Infrared Spectroscopy (FTIR), High Resolution Transmission Electron Microscopy (HRTEM), and X-ray Diffraction Analysis (XRD). The GCE modified by conducting coating binders [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS] based on Pt NPs/PPy-CB/ZnO NCs functioned as the working electrode and showed selectivity toward 4-NP in a phosphate buffer medium at pH 7.0. Our analysis of 4-NP showed the linearity from 1.5 to 40.5 µM, which was identified as the linear detection range (LDR). A current versus concentration plot was formed and showed a regression co-efficient R2 of 0.9917, which can be expressed by ip(µA) = 0.2493C(µM) + 15.694. The 4-NP sensor sensitivity was calculated using the slope of the LDR, considering the surface area of the GCE (0.0316 cm2). The sensitivity was calculated as 7.8892 µAµM-1cm-2. The LOD (limit of detection) of the 4-NP was calculated as 1.25 ± 0.06 µM, which was calculated from 3xSD/σ (SD: Standard deviation of blank response; σ: Slope of the calibration curve). Limit of quantification (LOQ) is also calculated as 3.79 µM from LOQ = 10xLOD/3.3. Sensor parameters such as reproducibility, response time, and analyzing stability were outstanding. Therefore, this novel approach can be broadly used to safely fabricate selective 4-NP sensors based on nanoparticle-decorated nanocomposite materials in environmental measurement.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Fuligem , Reprodutibilidade dos Testes , Limite de Detecção , Eletrodos , Nanopartículas/química , Carbono/química
16.
Membranes (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422140

RESUMO

Synthetic antibiotics have captured the market in recent years, but the side effects of these products are life-threatening. In recent times, researchers have focused their research on natural-based products such as natural herbal oils, which are eco-friendly, biocompatible, biodegradable, and antibacterial. In this study, polyethylene oxide (PEO) and aqueous ginger extract (GE) were electrospun to produce novel antibacterial nanomembrane sheets as a function of PEO and GE concentrations. A GE average particle size of 91.16 nm was achieved with an extensive filtration process, inferring their incorporation in the PEO nanofibres. The presence of the GE was confirmed by Fourier transform infrared spectroscopy (FTIR) through peaks of phenol and aromatic groups. The viscoelastic properties of PEO/GE solutions were analysed in terms of PEO and GE concentrations. Increasing PEO and GE concentrations increased the solution's viscosity. The dynamic viscosity of 3% was not changed with increasing shear rate, indicating Newtonian fluid behaviour. The dynamic viscosity of 4 and 5 wt% PEO/GE solutions containing 10% GE increased exponentially compared to 3 wt%. In addition, the shear thinning behaviour was observed over a frequency range of 0.05 to 100 rad/s. Scanning Electron Microscopy (SEM) analysis also specified an increase in the nanofibre's diameter with increasing PEO concentration, while SEM images displayed smooth morphology with beadless nanofibres at different PEO/GE concentrations. In addition, PEO/GE nanomembranes inhibited the growth of Staphylococcus aureus, as presented by qualitative antibacterial results. The extent of PEO/GE nanomembrane's antibacterial activity was further investigated by the agar dilution method, which inhibited the 98.79% Staphylococcus aureus population at 30% GE concentration.

17.
Membranes (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422150

RESUMO

Textile-supported nanocomposite as a scaffold has been extensively used in the medical field, mainly to give support to weak or harmed tissues. However, there are some challenges in fabricating the nanofiber/textile composite, i.e., suitable porous structure with defined pore size, less skin contact area, biocompatibility, and availability of degradable materials. Herein, polyamide-6 (PA) nanofibers were synthesized using needleless electrospinning with the toothed wheel as a spinneret. The electrospinning process was optimized using different process and solution parameters. In the next phase, optimized PA nanofiber membranes of optimum fiber diameter with uniform distribution and thickness were used in making nanofiber membrane-textile composite. Different textile fabrics (woven, non-woven, knitted) were developed. The optimized nanofiber membranes were combined with non-woven, woven, and knitted fabrics to make fabric-supported nanocomposite. The nanofiber/fabric composites were compared with available market woven and knitted meshes for mechanical properties, morphology, structure, and chemical interaction analysis. It was found that the tear strength of the nanofiber/woven composite was three times higher than market woven mesh, and the nanofiber/knitted composite was 2.5 times higher than market knitted mesh. The developed composite structures with woven and knitted fabric exhibited improved bursting strength (613.1 and 751.1 Kpa), tensile strength (195.76 and 227.85 N), and puncture resistance (68.76 and 57.47 N), respectively, than market available meshes. All these properties showed that PA nanofibers/textile structures could be utilized as a composite with multifunctional properties.

18.
Chemosphere ; 309(Pt 1): 136535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150484

RESUMO

The biogas production (BP), volatile fatty acids (VFAs), microbial communities, and microbes' active enzymes were studied upon the addition of biochar (0-1.5%) at 6% and 8% slaughterhouse waste (SHW) loadings. The 0.5% biochar enhanced BP by 1.5- and 1.6-folds in 6% and 8% SHW-loaded reactors, respectively. Increasing the biochar up to 1.5% caused a reduction in BP at 6% SHW. However, the BP from 8% of SHW was enhanced by 1.4-folds at 1.5% biochar. The VFAs production in all 0.5% biochar amended reactors was highly significant compared to control (p-value < 0.05). The biochar addition increased the bacterial and archaeal diversity at both 6% and 8% SHW loadings. The highest number of OTUs at 0.5% biochar were 567 and 525 in 6% and 8% SHW, respectively. Biochar prompted the Clostridium abundance and increased the lyases and transaminases involved in the degradation of lipids and protein, respectively. Biochar addition improved the Methanosaeta and Methanosphaera abundance in which the major enzymes were reductase and hydrogenase. The archaeal enzymes showed mixed acetoclastic and hydrogenotrophic methanogenesis.


Assuntos
Hidrogenase , Liases , Microbiota , Archaea/metabolismo , Biocombustíveis , Anaerobiose , Reatores Biológicos , Matadouros , Metano/metabolismo , Hidrogenase/metabolismo , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Liases/metabolismo , Transaminases , Digestão
19.
Nanomaterials (Basel) ; 12(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889543

RESUMO

Platinum-dysprosium (Pt-Dy) alloys prepared by the arc melting technique are assessed as potential electrodes for the oxygen reduction reaction (ORR) using voltammetry and chronoamperometry in alkaline media. A relatively small change (10 at.%) in the alloy composition brought a notable difference in the alloys' performance for the ORR. Pt40Dy60 electrode, i.e., the electrode with a lower amount of Pt, was identified to have a higher activity towards ORR as evidenced by lower overpotential and higher current densities under identical experimental conditions. Furthermore, DFT calculations point out the unique single-atom-like coordination and electronic structure of Pt atoms in the Pt40Dy60 surface as responsible for enhanced ORR activity compared to the alloy with a higher Pt content. Additionally, Pt-Dy alloys showed activity in the oxygen evolution reaction (OER), with the OER current density lower than that of pure Pt.

20.
Sensors (Basel) ; 22(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590835

RESUMO

Cyber-threats are becoming a big concern due to the potential severe consequences of such threats is false data injection (FDI) attacks where the measures data is manipulated such that the detection is unfeasible using traditional approaches. This work focuses on detecting FDIs for phasor measurement units where compromising one unit is sufficient for launching such attacks. In the proposed approach, moving averages and correlation are used along with machine learning algorithms to detect such attacks. The proposed approach is tested and validated using the IEEE 14-bus and the IEEE 30-bus test systems. The proposed performance was sufficient for detecting the location and attack instances under different scenarios and circumstances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...