Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 45(5-6): 719-739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37074554

RESUMO

PURPOSE: Purple acid phosphatases (PAPs) includ the largest classes of non-specific plant acid phosphatases. Most characterized PAPs were found to play physiological functions in phosphorus metabolism. In this study, we investigated the function of AtPAP17 gene encoding an important purple acid phosphatase in Arabidopsis thaliana. METHODS: The full-length cDNA sequence of AtPAP17 gene under the control of CaMV-35S promoter was transferred to the A. thaliana WT plant. The generated homozygote AtPAP17-overexpressed plants were compared by the types of analyses with corresponding homozygote atpap17-mutant plant and WT in both + P (1.2 mM) and - P (0 mM) conditions. RESULTS: In the + P condition, the highest and the lowest amount of Pi was observed in AtPAP17-overexpressed plants and atpap17-mutant plants by 111% increase and 38% decrease compared with the WT plants, respectively. Furthermore, under the same condition, APase activity of AtPAP17-overexpressed plants increased by 24% compared to the WT. Inversely, atpap17-mutant plant represented a 71% fall compared to WT plants. The comparison of fresh weight and dry weight in the studied plants showed that the highest and the lowest amount of absorbed water belonged to OE plants (with 38 and 12 mg plant-1) and Mu plants (with 22 and 7 mg plant-1) in + P and - P conditions, respectively. CONCLUSION: The lack of AtPAP17 gene in the A. thaliana genome led to a remarkable reduction in the development of root biomass. Thus, AtPAP17 could have an important role in the root but not shoot developmental and structural programming. Consequently, this function enables them to absorb more water and eventually associated with more phosphate absorption.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fósforo , Glicoproteínas/genética , Fosfatase Ácida/genética , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Iran J Biotechnol ; 21(1): e3175, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36811105

RESUMO

Background: Reteplase (recombinant plasminogen activator, r-PA) is a recombinant protein designed to imitate the endogenous tissue plasminogen activator and catalyze the plasmin production. It is known that the application of reteplase is limited by the complex production processes and protein's stability challenges. Computational redesign of proteins has gained momentum in recent years, particularly as a powerful tool for improving protein stability and consequently its production efficiency. Hence, in the current study, we implemented computational approaches to improve r-PA conformational stability, which fairly correlates with protein's resistance to proteolysis. Objectives: The current study was developed in order to evaluate the effect of amino acid substitutions on the stability of reteplase structure using molecular dynamic simulations and computational predictions. Materials and Methods: Several web servers designed for mutation analysis were utilized to select appropriate mutations. Additionally, the experimentally reported mutation, R103S, converting wild type r-PA into non-cleavable form, was also employed. Firstly, mutant collection, consisting of 15 structures, was constructed based on the combinations of four designated mutations. Then, 3D structures were generated using MODELLER. Finally, 17 independent 20-ns molecular dynamics (MD) simulations were conducted and different analysis were performed like root-mean-square deviation (RMSD), root-mean-square fluctuations (RMSF), secondary structure analysis, number of hydrogen bonds, principal components analysis (PCA), eigenvector projection, and density analysis. Results: Predicted mutations successfully compensated the more flexible conformation caused by R103S substitution, so, improved conformational stability was analyzed from MD simulations. In particular, R103S/A286I/G322I indicated the best results and remarkably enhanced the protein stability. Conclusion: The conformational stability conferred by these mutations will probably lead to more protection of r-PA in protease-rich environments in various recombinant systems and potentially enhance its production and expression level.

3.
Mol Biotechnol ; 64(9): 1013-1021, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35332419

RESUMO

Targeting of vascular endothelial growth factor (VEGF) using AntiVEGF can be a promising approach for angiogenesis inhibition and cancer therapy. In this study, we direct AntiVEGF recombinant protein accumulation to cucurbit plant apoplast using a suitable signal (Pr1b) sequence. After assembling the target gene construct and cloning into the expression vector, we infected the plants with the resulting pZYMV-AntiVEGF viral vector. Transcription of the target gene was confirmed with RT-PCR assays. The apoplast-targeted AntiVEGF recombinant protein was detected in infected plants by Dot-blot, western blot, and ELISA analysis. AntiVEGF protein accumulation in the apoplast resulted in levels of 1.2% of TSP (Total Soluble Protein) that demonstrated a two-order increase compared to the cytoplasm-targeted protein. After purification of AntiVEGF protein using aqueous two-phase system (ATPS), purified protein was analyzed with MTT assay. Our results reveal that production of biologically active and correctly processed apoplast-targeted AntiVEGF recombinant protein is possible in plant apoplast. The low level of cytoplasm-targeted AntiVEGF recombinant protein might result from the degradation of improperly folded protein.


Assuntos
Vírus de Plantas , Fator A de Crescimento do Endotélio Vascular , Vetores Genéticos , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
4.
PLoS One ; 16(11): e0260796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847186

RESUMO

Thrombolytic and fibrinolytic therapies are effective treatments to dissolve blood clots in stroke therapy. Thrombolytic drugs activate plasminogen to its cleaved form plasmin, a proteolytic enzyme that breaks the crosslinks between fibrin molecules. The FDA-approved human tissue plasminogen activator Reteplase (rPA) is a non-glycosylated protein produced in E. coli. rPA is a deletion mutant of the wild-type Alteplase that benefits from an extended plasma half-life, reduced fibrin specificity and the ability to better penetrate into blood clots. Different methods have been proposed to improve the production of rPA. Here we show for the first time the transient expression in Nicotiana benthamiana of rPA fused to the immunoglobulin fragment crystallizable (Fc) domain on an IgG1, a strategy commonly used to improve the stability of therapeutic proteins. Despite our success on the expression and purification of dimeric rPA-Fc fusions, protein instability results in high amounts of Fc-derived degradation products. We hypothesize that the "Y"- shape of dimeric Fc fusions cause steric hindrance between protein domains and leads to physical instability. Indeed, mutations of critical residues in the Fc dimerization interface allowed the expression of fully stable rPA monomeric Fc-fusions. The ability of rPA-Fc to convert plasminogen into plasmin was demonstrated by plasminogen zymography and clot lysis assay shows that rPA-Fc is able to dissolve blood clots ex vivo. Finally, we addressed concerns with the plant-specific glycosylation by modulating rPA-Fc glycosylation towards serum-like structures including α2,6-sialylated and α1,6-core fucosylated N-glycans completely devoid of plant core fucose and xylose residues.


Assuntos
Fibrinólise/efeitos dos fármacos , Fibrinolíticos , Fragmentos Fc das Imunoglobulinas , Nicotiana/genética , Proteínas Recombinantes de Fusão , Ativador de Plasminogênio Tecidual , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Humanos , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Ativador de Plasminogênio Tecidual/biossíntese , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/farmacologia , Nicotiana/metabolismo
5.
Transgenic Res ; 29(4): 381-394, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32686067

RESUMO

The plant-based expression systems are now accredited as bioreactors for the high production of various biopharmaceuticals. However, low levels of agglomeration and the absence of effective procedures for purification of recombinant proteins have remained two essential obstacles in molecular farming. In this research, we have studied the production of human interferon gamma (hIFN-γ) in tobacco and analyzed the effects of elastin-like polypeptide (ELP) tag and subcellular localization on its accumulation. We report a remarkable enhancement of accumulation of the fusion proteins versus the corresponding unfused hIFN-γ proteins. Furthermore, the hIFN-γ (with and without ELP) accumulated to higher levels in the endoplasmic reticulum. The ELP fusion proteins were successfully recovered from total soluble protein with adding 2.75 M NaCl and three rounds of inverse transition cycling (ITC). The hIFN-γ was also separated from ELP with Enterokinase cleavage of the fusion protein and recovered by ITC. Inverse transition analysis indicated that the hIFN-γ-ELP variants aggregate above their inverse transition temperature and at high ionic strength. Investigation of glycosylation revealed that fused or unfused hIFN-γ proteins are N-glycosylated in different cellular locations. Moreover, N-glycosylation analysis and bioassay showed that fusion to ELP does not disturb glycosylation process and antiviral activity of hIFN-γ.


Assuntos
Interferon gama/metabolismo , Nicotiana/metabolismo , Peptídeos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Glicosilação , Humanos , Interferon gama/genética , Peptídeos/genética , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Nicotiana/genética
6.
Protein Expr Purif ; 173: 105616, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32179088

RESUMO

In animals, interferon-γ (IFN-γ) is known as a cytokine involved in antiviral and anticancer activities with a higher biochemical activity in contrast to other IFNs. To produce recombinant human IFN-γ (hIFN-γ) protein in tobacco, factors influencing gene delivery were first evaluated for higher efficiency of transient expression by fluorometric measurement of GUS activity. Higher levels of transient expression were observed in leaves of Nicotiana tabacum cv. Samsun infiltrated with GV3101 strain (optical density equal to 1.0 at 600 nm) under treatment of 200 µM AS at 4 days post agroinfiltration (dpa). The Samsun cv. proved to be amenable with 1.4- and 1.5-fold higher levels of transient expression than Xanthi and N. benthamiana, respectively. In addition, the GV3101 remained the best strain for use in transient assays without any necrotic response in tobacco. The levels of transient hIFN-γ expression were also estimated in the Samsun cv. infiltrated with different Agrobacterium tumefaciens strains carrying various expression constructs. Higher levels of accumulation were obtained with targeting the hIFN-γ protein to endoplasmic reticulum (ER) or apoplastic space than those expressed into cytoplasm. Moreover, antiviral bioassay revealed that recombinant hIFN-γ protein produced in tobacco is biologically active and protects the Vero cells from infection generated by vesicular stomatitis virus (VSV).


Assuntos
Interferon gama , Nicotiana , Folhas de Planta , Plantas Geneticamente Modificadas , Animais , Chlorocebus aethiops , Humanos , Interferon gama/genética , Interferon gama/isolamento & purificação , Interferon gama/farmacologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Nicotiana/genética , Nicotiana/metabolismo , Células Vero
7.
Funct Integr Genomics ; 20(3): 433-458, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31781992

RESUMO

Oilseed crop oils contain a variety of unsaturated fatty acids that are synthesized and regulated by fatty acid desaturases (FADs). In this study, 14 FAD3 (ω3 desaturase) protein sequences from oilseeds are analyzed and presented through the application of several computational tools. The results indicated a close relationship between Brassica napus and Camelina sativa, as well as between Salvia hispanica and Perilla frutescens FAD3s, due to a high similarity in codon preferences in codon usage clusters and the phylogenetic tree. The cis-acting element results reveal that the seed-specific promoter region of BnFAD3 contains the critical conserved boxes such as HSE and ABRE, which are involved in responsiveness to heat stress and abscisic acid. The presence of the aforementioned conserved boxes may increase cold acclimation as well as tolerance to drought and high salinity. Omega(ω)3 desaturases contain a Skn-1 motif which is a cis-acting regulatory element required involved in endosperm development. In oilseed FAD3s, leucine is the most repeated amino acid in FAD3 proteins. The study conveyed that B. napus, Camelina sativa, Linum usitatissimum, Vernicia fordii, Gossypium hirsutum, S. hispanica, Cannabis sativa, and P. frutescens have retention signal KXKXX/XKXX at their c-terminus sites, which is one of the most important characteristics of FADs. Additionally, it was found that BnFAD3 is a transmembrane protein that can convert ω6 to ω3 fatty acids and may simultaneously act as a potassium ion channel in the ER.


Assuntos
Produtos Agrícolas/genética , Ácidos Graxos Dessaturases/química , Magnoliopsida/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Plantas/química , Sinais Direcionadores de Proteínas , Sequência Conservada , Produtos Agrícolas/classificação , Produtos Agrícolas/enzimologia , Retículo Endoplasmático/metabolismo , Ácidos Graxos Dessaturases/genética , Magnoliopsida/classificação , Magnoliopsida/enzimologia , Proteínas de Membrana Transportadoras/genética , Filogenia , Proteínas de Plantas/genética , Elementos de Resposta , Sementes/enzimologia , Sementes/genética , Homologia de Sequência
8.
Anal Biochem ; 585: 113401, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442384

RESUMO

In this study, the ELP sequence was fused to human interferon-γ (hIFN-γ) and hIFN-γ-ELP fusion protein accumulated with high levels of yield and purity, compared with the corresponding unfused hIFN-γ protein. The hIFN-γ was exclusively produced in the form of insoluble inclusion bodies while the hIFN-γ was relatively soluble when expressed as an ELP fusion protein. The insoluble inclusion bodies were then solubilized under denaturing conditions, refolded in the presence of arginine and purified by single-step ion-exchange chromatography. The fusion to ELP signidficantly increased the accumulation of hIFN-γ by 10-fold with a stable expression on average of 46.85% of total soluble protein (TSP). Furthermore, three rounds of Inverse Transition Cycling (ITC) purification increased overall purity of the hIFN-γ-ELP to 98 ±â€¯5%. The recovery amount of the fusion protein found to be dependent on the NaCl concentration, with increase of NaCl concentration, a greater fraction of the hIFN-γ-ELP was aggregated. However, due to the presence of an aliphatic guest residue in ELP sequence, the high concentration of salt was necessary to trigger the inverse phase transition of hIFN-γ-ELP fusion protein. Moreover, recombinant hIFN-γ and hIFN-γ-ELP proteins purified from E. coli possessed a relatively similar bioactivity based on viral cytopathic assay.


Assuntos
Elastina/química , Escherichia coli/química , Corpos de Inclusão/química , Interferon gama/química , Proteínas Recombinantes de Fusão/química , Arginina/química , Cromatografia por Troca Iônica , Elastina/genética , Escherichia coli/genética , Expressão Gênica , Humanos , Interferon gama/genética , Transição de Fase , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/genética , Cloreto de Sódio/química , Temperatura de Transição
9.
Mol Biotechnol ; 61(2): 84-92, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30484145

RESUMO

The aim of this study is to assess the effect of methyl jasmonate (MeJA) and temperature on the valuable pharmaceuticals expression in a virus-mediated transient expression system, and so the Zuchini Yellow Mosaic Virus (ZYMV) based vector was used for transferring the GFP reporter gene and recombinant tissue plasminogen activator (rtPA) gene (K2S) to cucurbit (Cucurbita pepo L.). MeJA, temperature and time (days after inoculation), were evaluated as a factorial experiment in a completely randomized design (CRD). At first, the effect of all treatment combinations on GFP expression was assessed. At this step, the ELISA test was used to select the optimum treatment combination. ELISA method revealed the significant difference between applied treatments. The optimized treatment significantly increased the expression of rtPA compared to the control. The Real-Time PCR reaction for both GFP and rtPA genes showed no significant differences between optimum and control treatments, however, transcripts of the small subunit of RuBisCO were extremely down-regulated in optimum treatment condition. Reduction in RuBisCO expression at protein level was tangible under treatment condition based on the ELISA test. Therefore, it can be inferred that suppressing the expression of RuBisCO, probably resulted in higher access of expression system to free amino acids inside the cell. In this study, MeJA has been shown to be a positive factor, but the low temperature (17 °C), unlike previous studies, suppressed the expression of recombinant protein unexpectedly, probably due to the incompatibility of the viral construct with low temperature. In conclusion, the use of a suitable gene construct, which is not sensitive to temperature, is likely to result in a more favorable outcome.


Assuntos
Acetatos/farmacologia , Cucurbita/genética , Ciclopentanos/farmacologia , Expressão Gênica/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Ativador de Plasminogênio Tecidual/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter/genética , Vetores Genéticos , Agricultura Molecular , Vírus do Mosaico/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura , Ativador de Plasminogênio Tecidual/metabolismo
10.
Daru ; 26(2): 129-142, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30377988

RESUMO

BACKGROUND: Paclitaxel is a potent antitumor alkaloid widely used for the treatment of several cancer types. This valuable secondary metabolite naturally exists in the inner bark of Taxus species in very low amounts. The small-scale production of paclitaxel in Taxus cell cultures requires utilization of several elicitors. OBJECTIVE: The main objective of this work was to identify key genes that encode rate-limiting enzymes in paclitaxel biosynthesis pathway by investigating the possible relationship between paclitaxel production and a set of 13 involved genes' relative expression in Taxus baccata L. cell suspension cultures affected by coronatine and methyl-ß-cyclodextrin. METHODS: In the present research, the most important key genes were identified using gene expression profiling evaluation and paclitaxel production assessment in Taxus baccata L. cell cultures affected by mentioned elicitors. RESULTS AND CONCLUSION: Gene expression levels were variably increased using methyl-ß-cyclodextrin, and in some cases, a synergistic effect on transcript accumulation was observed when culture medium was supplemented with both elicitors. It was revealed that DBAT, BAPT, and DBTNBT are the most important rate-limiting enzymes in paclitaxel biosynthesis pathway in Taxus baccata L. cell suspension cultures under coronatine and methyl-ß-cyclodextrin elicitation condition. Moreover, PAM was identified as one of the important key genes especially in the absence of ß-phenylalanine. In cell cultures affected by these elicitors, paclitaxel was found largely in the culture media (more than 90%). The secretion of this secondary metabolite suggests a limited feedback inhibition and reduced paclitaxel toxicity for producer cells. It is the result of the ABC gene relative expression level increment under methyl-ß-cyclodextrin elicitation and highly depends on methyl-ß-cyclodextrin's special property (complex formation with hydrophobic compounds). Paclitaxel biosynthesis was obviously increased due to the effect of coronatine and methyl-ß-cyclodextrin elicitation, leading to the production level of 5.62 times higher than that of the untreated cultures. Graphical abstract Rate Limiting Enzymes in Paclitaxel Biosynthesis Pathway: DBAT, BAPT, DBTNBT and PAM.


Assuntos
Aminoácidos/farmacologia , Técnicas de Cultura de Células/métodos , Indenos/farmacologia , Paclitaxel/biossíntese , Proteínas de Plantas/genética , Taxus/citologia , beta-Ciclodextrinas/farmacologia , Células Cultivadas , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes e Vias Metabólicas , Reação em Cadeia da Polimerase em Tempo Real , Taxus/enzimologia , Taxus/metabolismo
11.
Sci Rep ; 8(1): 14079, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232346

RESUMO

Human tissue-type plasminogen activator is one of the most important therapeutic proteins involved in the breakdown of blood clots following the stroke. A mutation was found at position 1541 bp (G514E) and the mutated form was cloned into the binary vector pTRAc-ERH. In silico analysis showed that this mutation might have no significant effect on the active site of the tissue plasminogen activator enzyme. Accordingly, zymography assay confirmed the serine protease activity of the mutated form and its derivatives. The expression of the mutated form was verified with/without co-agroinjection of the P19 gene silencing suppressor in both Nicotiana tabacum and N. benthamiana. The ELISA results showed that the concentration of the mutated form in the absence of P19 was 0.65% and 0.74% of total soluble protein versus 0.141% and 1.36% in the presence of P19 in N. benthamiana and N. tabacum, respectively. In N. tabacum, co-agroinjection of P19 had the synergistic effect and increased the mutated tissue plasminogen activator production two-fold higher. However, in N. benthamiana, the presence of P19 had the adverse effect of five-fold reduction in the concentration. Moreover, results showed that the activity of the mutated form and its derivatives was more than that of the purified commercial tissue plasminogen activator.


Assuntos
Nicotiana/crescimento & desenvolvimento , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Proteínas Virais/genética , Domínio Catalítico , Simulação por Computador , Humanos , Mutação , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Engenharia de Proteínas , Especificidade da Espécie , Ativador de Plasminogênio Tecidual/química , Nicotiana/classificação , Nicotiana/genética
12.
3 Biotech ; 8(9): 405, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30221118

RESUMO

Black caraway is of great importance for its terpene compounds. Many genes are involved in the biosynthesis of secondary metabolites in medicinal plants. For this study, black caraway seeds were collected from five different regions, i.e. [Isfahan; Kerman (Khabr); Semnan; Kerman (Sirch); and Hormozgan]. The black caraway seed oil was extracted and analyzed by means of the gas chromatography method. There was a negatively significant correlation (p ≤ 0.05) observed between cuminaldehyde and gammaterpinene compounds. 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and isopentenyl pyrophosphate isomerase (IPI) play an important role in the biosynthesis of secondary metabolites. Appropriate primers were designed for these genes based on the conserved regions in other plants. Amplified fragments were then sequenced. Blastn results indicated the similarity of the high RNA sequences between new sequences and other HMGR and IPI gene sequences in GenBank, and it also identified the HMGR and IPI gene sequences of B. persicum. A fragment of the HMGR gene with KJ143741 number was recorded in the gene bank. Quantitative PCR showed that the relative expression of two genes in different growth stages of B. persicum was significantly different between the germination stage and the multi-leaf stage, and also between the germination stage and the flowering stage (p < 0.05); however, there was no significant difference observed between the flowering stage and the multi-leaf stage. The results indicated that the expression of HMGR increased from the germination stage to the adult plant, and then it got stable until the flowering stage; in the same vein, the expression of IPI increased continuously from the germination stage to the flowering stage. The expression of HMGR and IPI genes occurred differently at the germination stage of five ecotypes. The Hormozgan ecotype showed the least expression rate.

13.
Plant Mol Biol ; 97(1-2): 103-112, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29633168

RESUMO

KEY MESSAGE: This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.


Assuntos
ADP Ribose Transferases/genética , Toxinas Bacterianas/genética , Cloroplastos/genética , Exotoxinas/genética , Imunotoxinas/genética , Lactuca/genética , Fatores de Virulência/genética , ADP Ribose Transferases/farmacologia , Toxinas Bacterianas/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cloroplastos/metabolismo , Clonagem Molecular , Exotoxinas/farmacologia , Células HEK293 , Humanos , Imunotoxinas/farmacologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Fatores de Virulência/farmacologia , Exotoxina A de Pseudomonas aeruginosa
14.
Biotechnol Lett ; 39(11): 1683-1688, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28836022

RESUMO

OBJECTIVE: To develop a deliberately engineered expression and purification system for an active chimeric-recombinant tissue plasminogen activator (crtPA) using co-expression with polyhydroxybutyrate (PHB) operon genes. RESULTS: Fusion of crtPA with PhaC-synthase simplified the purification steps through crtPA sedimentation with PHB particles. Moreover, the covalently immobilized crtPA was biologically active as shown in a chromogenic assay. Upon WELQut-protease activity, the released single-chain crtPA converted to the two-chain form which produced a pattern of bands with approx. MW of 32 and 11 kDa in addition to the full length crtPA. CONCLUSION: Fusion of crtPA with PhaC-synthase not only simplifies purification from the bacterial host lysate, but also co-expression of PHB operon genes creates an oxidative environment, thereby reducing the inclusion body formation possibility. The isolated crtPA-PHB granules exhibited crtPA serine protease activity. Thus, fusion with the PhaC protein could be used as a scaffold for covalent displaying of functional disulfide-rich proteins.


Assuntos
Aciltransferases/metabolismo , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Ativador de Plasminogênio Tecidual/genética , Aciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Propriedades de Superfície , Ativador de Plasminogênio Tecidual/biossíntese , Ativador de Plasminogênio Tecidual/metabolismo
15.
Plant Physiol Biochem ; 118: 130-137, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28633085

RESUMO

Transplastomic plants are a system of choice for the mass production of biopharmaceuticals due to the polyploidy of the plastid genome and the low risk of pollen-mediated outcrossing because of maternal inheritance. However, as field-grown plants, they can suffer contamination by agrochemicals and fertilizers, as well as fluctuations in yield due to climatic changes and infections. Tissue-type plasminogen activator (tPA), a protein used to treat heart attacks, converts plasminogen into plasmine, which digests fibrin and induces the dissolution of fibrin clots. Recently, we obtained transplastomic tobacco plants carrying the K2S gene encoding truncated human tPA (reteplase) with improved biological activity, and confirmed the presence of the target protein in the transgenic plant leaves. Considering the advantages of plant cell cultures for biopharmaceutical production, we established a cell line derived from the K2S tobacco plants. The active form of reteplase was quantified in cultures grown in light or darkness, with production 3-fold higher in light.


Assuntos
Nicotiana/metabolismo , Células Vegetais/metabolismo , Ativador de Plasminogênio Tecidual/biossíntese , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Ativador de Plasminogênio Tecidual/genética , Nicotiana/citologia , Nicotiana/genética
16.
Front Plant Sci ; 8: 568, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473836

RESUMO

Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance.

17.
Plant Physiol Biochem ; 108: 139-144, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27428368

RESUMO

Plants are low cost platforms for the production of recombinant proteins, but their complexity renders the purification of plant recombinant proteins more difficult than proteins expressed in yeast or bacteria. Plastid transformation enables high-level expression of foreign genes and the accumulation of recombinant proteins in plastid organelles. Histidine (His) tags are widely used for affinity purification of recombinant proteins in a nickel column. The human tissue-type plasminogen activator (tPA) is one of the most important pharmaceutical recombinant proteins involved in the breakdown of blood clots in different parts of the body. The truncated form of the tissue plasminogen activator (K2S) has a longer plasma half-life, better diffusion into the clot, and higher fibrinolytic activity. In a construct designed to insert the K2S gene in the tobacco chloroplast, the sequence of six histidines and a factor Xa protease site was fused to the C-terminus of the K2S protein. The presence and amount of tPA recombinant protein in transplastomic tobacco plants was estimated by ELISA analysis using a specific antibody. The protein was purified from total soluble protein, insoluble protein aggregates and the protein was extracted from the isolated chloroplast using nickel resin and a chromatography column. After digestion of the purified protein with factor Xa, the presence of the purified tPA protein was confirmed by western blot analysis.


Assuntos
Nicotiana/genética , Proteínas Recombinantes/isolamento & purificação , Ativador de Plasminogênio Tecidual/isolamento & purificação , Fracionamento Químico , Cloroplastos/genética , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Nicotiana/metabolismo
18.
J Econ Entomol ; 108(2): 515-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470162

RESUMO

The fitness of Plutella xylostella L. on different genetically manipulated Brassica plants, including canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma-ray mutant-RGS003, and one transgenic (PF) genotype was compared using two-sex and female-based life table parameters. All experiments were conducted in a growth chamber at 25±1°C, 65±5% relative humidity, and a photoperiod of 16:8 (L:D) h. There were significant differences in duration of different life stages of P. xylostella on different plant genotypes. The shortest (13.92 d) and longest (24.61 d) total developmental time were on Opera and PF, respectively. The intrinsic rate of increase of P. xylostella ranged between 0.236 (Opera) and 0.071 day(-1) (PF). The highest (60.79 offspring) and lowest (7.88 offspring) net reproductive rates were observed on Opera and PF, respectively. Comparison of intrinsic rate of increase, net reproductive rates, finite rate of increase, mean generation time, fecundity, and survivorship of P. xylostella on the plant genotypes suggested that this pest performed well on cultivars (RGS003 and Opera) and performed poorly on the other manipulated genotypes especially on mutant-RGS003 and PF. Glucosinolate levels were significantly higher in damaged plants than undamaged ones and the lowest and highest concentrations of glucosinolates were found in transgenic genotype and canola's progenitor, respectively. Interestingly, our results showed that performance and fitness of this pest was better on canola's progenitor and cultivated plants, which had high levels of glucosinolate.


Assuntos
Brassica/genética , Glucosinolatos/metabolismo , Herbivoria , Mariposas/crescimento & desenvolvimento , Animais , Brassica/metabolismo , Feminino , Fertilidade , Masculino , Plantas Geneticamente Modificadas
19.
Biotechnol Appl Biochem ; 62(1): 55-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24716841

RESUMO

Different expression systems such as bacteria and mammalian cells have been used to produce pharmaceutical proteins. In recent years, the use of plants as bioreactors offers efficient and economical systems in recombinant protein production. Furthermore, because of the large number of plastid copies in plants, chloroplast engineering functions as an effective method to increase recombinant protein expression. Because the commercially available insulin for treatment does not contain C-peptide, which is of great importance for type 1 diabetic patients, the current study introduces the human proinsulin gene fused with protein A into the tobacco chloroplast genome using the biolistic method. To achieve homoplasmy, three rounds of selection and regeneration of transforming cells were performed on the medium that contained spectinomycin antibiotic and hormones. The PCR analysis indicated the presence of the proinsulin gene in transplastomic plants. The reverse-transcription PCR analysis confirmed the expression of the proinsulin-protein A fusion at the transcription level. Immunoblot assays of leaf-derived protein extracts confirmed that the target gene expression is up to 0.2% of the total soluble protein. Our study showed that protein A fusion is not as efficient as other reported fusions. The transplastomic plants were also confirmed for homoplasmy using Southern blot analysis.


Assuntos
Cloroplastos/genética , Regulação da Expressão Gênica/genética , Engenharia Genética/métodos , Nicotiana/genética , Proinsulina/genética , Proteínas Recombinantes de Fusão/genética , Proteína Estafilocócica A/genética , Transgenes/genética , Genoma de Planta/genética , Humanos , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/citologia
20.
Jundishapur J Nat Pharm Prod ; 9(1): 9-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24644433

RESUMO

BACKGROUND: Plants are among promising and suitable platform systems for production of recombinant biopharmaceutical proteins due to several features such as safety, no need for fermentation, inexpensive investment, and fast and easy scale-up. Human insulin is one of the most widely used medicines in the world. Up to now different expression systems including Escherichia coli, yeast and CHO have been exploited for producing recombinant human insulin and a variety of different recombinant insulin are extensively used. OBJECTIVES: This study reports on the transformation and expression of proinsulin gene in tomato plants for the first time in Iran. MATERIALS AND METHODS: This study reports the cloning, transformation and expression of proinsulin gene in tomato plants. Specific primers were designed and used for PCR amplification and cloning of the proinsulin gene in the plant expression vector pCAMBIA1304. The recombinant construct was transferred into Agrobacterium tumefaciens strain LBA4404, and used for Agrobacterium mediated stable transformation of tomato plants. Presence of the desired gene in transgenic lines was confirmed through colony PCR and sequencing. The expression of the protein in transgenic lines was confirmed by immunodot blot assay. RESULTS: The presence of the proinsulin gene in the genomic DNA of transgenic tomato was confirmed by PCR. Also total protein of transgenic tomato was extracted and the expression of proinsulin was detected using dotblot assay. CONCLUSIONS: This survey addresses the possibility of proinsulin gene transfer and expression in tomato transgenic lines. This study can be used as a basis for future researches to produce human proinsulin in tomato and other candidate plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...