Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 212(3): 107624, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950604

RESUMO

Proteins are dynamic molecules that can undergo rapid conformational rearrangements in response to stimuli. These structural changes are often critical to protein function, and thus elucidating time-dependent conformational landscapes has been a long-standing goal of structural biology. To harness the power of single particle cryo-EM methods to enable 'time-resolved' structure determination, we have developed a light-coupled cryo-plunger that pairs flash-photolysis of caged ligands with rapid sample vitrification. The 'flash-plunger' consists of a high-power ultraviolet LED coupled with focusing optics and a motorized linear actuator, enabling the user to immobilize protein targets in vitreous ice within a programmable time window - as short as tens of milliseconds - after stimulus delivery. The flash-plunger is a simple, inexpensive and flexible tool to explore short-lived conformational states previously unobtainable by conventional sample preparation methods.


Assuntos
Microscopia Crioeletrônica/métodos , Ligantes , Luz , Conformação Molecular , Proteínas/química , Manejo de Espécimes/métodos , Vitrificação
2.
Anal Chem ; 92(15): 10218-10222, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633489

RESUMO

Modern genomic sequencing efforts are identifying potential diagnostic and therapeutic targets more rapidly than existing methods can generate the peptide- and protein-based ligands required to study them. To address this problem, we have developed a microfluidic enrichment device (MFED) enabling kinetic off-rate selection without the use of exogenous competitor. We tuned the conditions of the device (bed volume, flow rate, immobilized target) such that modest, readily achievable changes in flow rates favor formation or dissociation of target-ligand complexes based on affinity. Simple kinetic equations can be used to describe the behavior of ligand binding in the MFED and the kinetic rate constants observed agree with independent measurements. We demonstrate the utility of the MFED by showing a 4-fold improvement in enrichment compared to standard selection. The MFED described here provides a route to simultaneously bias pools toward high-affinity ligands while reducing the demand for target-protein to less than a nanomole per selection.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Proteínas/química , Cinética , Ligantes , Ligação Proteica , RNA Mensageiro/química , Fatores de Tempo
3.
Sci Transl Med ; 11(500)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292262

RESUMO

Autoimmunity to membrane proteins in the central nervous system has been increasingly recognized as a cause of neuropsychiatric disease. A key recent development was the discovery of autoantibodies to N-methyl-d-aspartate (NMDA) receptors in some cases of encephalitis, characterized by cognitive changes, memory loss, and seizures that could lead to long-term morbidity or mortality. Treatment approaches and experimental studies have largely focused on the pathogenic role of these autoantibodies. Passive antibody transfer to mice has provided useful insights but does not produce the full spectrum of the human disease. Here, we describe a de novo autoimmune mouse model of anti-NMDA receptor encephalitis. Active immunization of immunocompetent mice with conformationally stabilized, native-like NMDA receptors induced a fulminant encephalitis, consistent with the behavioral and pathologic characteristics of human cases. Our results provide evidence for neuroinflammation and immune cell infiltration as components of the autoimmune response in mice. Use of transgenic mice indicated that mature T cells and antibody-producing cells were required for disease induction. This active immunization model may provide insights into disease induction and a platform for testing therapeutic approaches.


Assuntos
Encefalite/imunologia , Doença de Hashimoto/imunologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/imunologia , Vacinação/efeitos adversos , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Linfócitos B/imunologia , Comportamento Animal , Encéfalo/patologia , Encefalite/sangue , Encefalite/patologia , Células HEK293 , Doença de Hashimoto/sangue , Doença de Hashimoto/patologia , Humanos , Imunoglobulina G/sangue , Inflamação/patologia , Leucócitos/patologia , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo , Conformação Proteica , Proteolipídeos/metabolismo , Ratos , Linfócitos T/imunologia
5.
Cell ; 175(6): 1520-1532.e15, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500536

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play essential roles in memory formation, neuronal plasticity, and brain development, with their dysfunction linked to a range of disorders from ischemia to schizophrenia. Zinc and pH are physiological allosteric modulators of NMDARs, with GluN2A-containing receptors inhibited by nanomolar concentrations of divalent zinc and by excursions to low pH. Despite the widespread importance of zinc and proton modulation of NMDARs, the molecular mechanism by which these ions modulate receptor activity has proven elusive. Here, we use cryoelectron microscopy to elucidate the structure of the GluN1/GluN2A NMDAR in a large ensemble of conformations under a range of physiologically relevant zinc and proton concentrations. We show how zinc binding to the amino terminal domain elicits structural changes that are transduced though the ligand-binding domain and result in constriction of the ion channel gate.


Assuntos
Complexos Multiproteicos/química , Prótons , Receptores de N-Metil-D-Aspartato/química , Zinco/química , Regulação Alostérica , Animais , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Domínios Proteicos , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Células Sf9 , Spodoptera , Zinco/metabolismo
6.
ACS Chem Biol ; 13(9): 2568-2576, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30059207

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that play a central role in neuronal and neuromuscular signal transduction. Here, we have developed FANG ligands, fibronectin antibody-mimetic nicotinic acetylcholine receptor-generated ligands, using mRNA display. We generated a 1 trillion-member primary e10FnIII library to target a stabilized α1 nicotinic subunit (α211). This library yielded 270000 independent potential protein binding ligands. The lead sequence, α1-FANG1, represented 25% of all library sequences, showed the highest-affinity binding, and competed with α-bungarotoxin (α-Btx). To improve this clone, a new library based on α1-FANG1 was subjected to heat, protease, binding, off-rate selective pressures, and point mutations. This resulted in α1-FANG2 and α1-FANG3. These proteins bind α211 with KD values of 3.5 nM and 670 pM, respectively, compete with α-Btx, and show improved subunit specificity. α1-FANG3 is thermostable ( Tm = 62 °C) with a 6 kcal/mol improvement in folding free energy compared with that of the parent α1-FANG1. α1-FANG3 competes directly with the α-Btx binding site of intact neuromuscular heteropentamers [(α1)2ß1γδ] in mammalian culture-derived cellular membranes and in Xenopus laevis oocytes expressing these nAChRs. This work demonstrates that mRNA display against a monomeric ecto-domain of a pentamer has the capability to select ligands that bind that subunit in both a monomeric and a pentameric context. Overall, our work provides a route to creating a new family of stable, well-behaved proteins that specifically target this important receptor family.


Assuntos
Bungarotoxinas/metabolismo , Fibronectinas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Fibronectinas/genética , Biblioteca Gênica , Humanos , Ligantes , Camundongos , Mutação Puntual , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Xenopus
7.
Oncotarget ; 9(44): 27363-27379, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29937991

RESUMO

The cancer-associated protein Anterior Gradient 2 (AGR2) has been described, predominantly in adenocarcinomas. Increased levels of extracellular AGR2 (eAGR2) have been correlated with poor prognosis in cancer patients, making it a potential biomarker. Additionally, neutralizing AGR2 antibodies showed preclinical effectiveness in murine cancer models suggesting eAGR2 may be a therapeutic target. We set out to identify a peptide by mRNA display that would serve as a theranostic tool targeting AGR2. This method enables the selection of peptides from a complex (>1011) library and incorporates a protease incubation step that filters the selection for serum stable peptides. We performed six successive rounds of enrichment using a 10-amino acid mRNA display library and identified several AGR2 binding peptides. One of these peptides (H10), demonstrated high affinity binding to AGR2 with a binding constant (KD) of 6.4 nM. We developed an AGR2 ELISA with the H10 peptide as the capture reagent. Our H10-based ELISA detected eAGR2 from cancer cell spent media with a detection limit of (20-50 ng/ml). Furthermore, we investigated the therapeutic utility of H10 and discovered that it inhibited cell viability at IC50 (9-12 µmoles/L) in cancer cell lines. We also determined that 10 µg/ml of H10 was sufficient to inhibit cancer cell migration in breast and prostate cancer cell lines. A control peptide did not show any appreciable activity in these cells. The H10 peptide showed promise as both a novel diagnostic and a potential therapeutic peptide.

8.
J Mol Biol ; 429(4): 562-573, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27865780

RESUMO

K- and H-Ras are the most commonly mutated genes in human tumors and are critical for conferring and maintaining the oncogenic phenotype in tumors with poor prognoses. Here, we design genetically encoded antibody-like ligands (intrabodies) that recognize active, GTP-bound K- and H-Ras. These ligands, which use the 10th domain of human fibronectin as their scaffold, are stable inside the cells and when fused with a fluorescent protein label, the constitutively active G12V mutant H-Ras. Primary selection of ligands against Ras with mRNA display resulted in an intrabody (termed RasIn1) that binds with a KD of 2.1µM to H-Ras(G12V) (GTP), excellent state selectivity, and remarkable specificity for K- and H-Ras. RasIn1 recognizes residues in the Switch I region of Ras, similar to Raf-RBD, and competes with Raf-RBD for binding. An affinity maturation selection based on RasIn1 resulted in RasIn2, which binds with a KD of 120nM and also retains excellent state selectivity. Both of these intrabodies colocalize with H-Ras, K-Ras, and G12V mutants inside the cells, providing new potential tools to monitor and modulate Ras-mediated signaling. Finally, RasIn1 and Rasin2 both display selectivity for the G12V mutants as compared with wild-type Ras providing a potential route for mutant selective recognition of Ras.


Assuntos
Anticorpos/genética , Proteínas ras/genética , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Células COS , Chlorocebus aethiops , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
9.
Small ; 12(38): 5256-5260, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27529518

RESUMO

G protein-coupled receptor (GPCR) is incorporated into polymeric vesicles made up of diblock copolymer bilayers. Successfully incorporated GPCRs exhibit correct biased physiological orientation and respond to various ligands. After extended dehydrated storage via lyophilization and subsequent rehydration, diblock copolymer polymersomes retain their shape and incorporated GPCR retains its function.


Assuntos
Polímeros/química , Receptores Acoplados a Proteínas G/metabolismo , Fluorescência , Liofilização , Bicamadas Lipídicas/química , Receptor 5-HT1A de Serotonina/metabolismo , Soluções , Lipossomas Unilamelares/química
10.
Angew Chem Int Ed Engl ; 55(12): 4007-10, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26914638

RESUMO

There is great demand for high-throughput methods to characterize ligand affinity. By combining mRNA display with next-generation sequencing, we determined the kinetic on- and off-rates for over twenty thousand ligands without the need for synthesis or purification of individual members. Our results are reproducible and as accurate as those obtained with other methods of affinity measurement.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , Cinética , Ligantes
11.
Anal Chem ; 87(23): 11755-62, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26485531

RESUMO

Some of the most commonly used affinity reagents (e.g., antibodies) are often developed and used in conditions where their input concentrations ([L]0) and affinities (K(d)) are not known. Here, we have developed a general approach to determine both [L]0 and K(d) values simultaneously for affinity reagents (small molecules, proteins, and antibodies). To do this, we perform quantitative equilibrium exclusion immunoassays with two different concentrations of target and fit the data simultaneously to determine K(d) and [L]0. The results give accurate and reproducible measures of both values compared to established methods. By performing detailed error analysis, we demonstrate that our fitting gives unique solutions and indicates where K(d) and [L]0 measures are reliable. Furthermore, we found that a divalent model of antibody binding gives accurate K(d) and [L]0 values in both the forward (antibody immobilized) and the reverse (target immobilized) assays-addressing the long-term problem of obtaining quantitative data from reverse assays.


Assuntos
Anticorpos/análise , Compostos de Bifenilo/análise , Nitrofenóis/análise , Peptídeos/análise , Sulfonamidas/análise , Anticorpos/química , Compostos de Bifenilo/química , Humanos , Imunoensaio , Ligantes , Nitrofenóis/química , Peptídeos/química , Piperazinas/análise , Piperazinas/química , Ligação Proteica , Sulfonamidas/química , Termodinâmica
12.
Sci Rep ; 4: 6008, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25234472

RESUMO

Peptides constructed with the 20 natural amino acids are generally considered to have little therapeutic potential because they are unstable in the presence of proteases and peptidases. However, proteolysis cleavage can be idiosyncratic, and it is possible that natural analogues of functional sequences exist that are highly resistant to cleavage. Here, we explored this idea in the context of peptides that bind to the signaling protein Gαi1. To do this, we used a two-step in vitro selection process to simultaneously select for protease resistance while retaining function-first by degrading the starting library with protease (chymotrypsin), followed by positive selection for binding via mRNA display. Starting from a pool of functional sequences, these experiments revealed peptides with 100-400 fold increases in protease resistance compared to the parental library. Surprisingly, selection for chymotrypsin resistance also resulted in similarly improved stability in human serum (~100 fold). Mechanistically, the decreases in cleavage results from both a lower rate of cleavage (kcat) and a weaker interaction with the protease (Km). Overall, our results demonstrate that the hydrolytic stability of functional, natural peptide sequences can be improved by two orders of magnitude simply by optimizing the primary sequence.


Assuntos
Proteínas Sanguíneas/química , Biblioteca de Peptídeos , Peptídeos/química , RNA Mensageiro/genética , Sequência de Aminoácidos , Proteínas Sanguíneas/uso terapêutico , Humanos , Peptídeo Hidrolases/química , Peptídeos/uso terapêutico , Ligação Proteica , Proteólise , RNA Mensageiro/química
13.
Anal Chem ; 86(10): 4715-22, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24749546

RESUMO

A major benefit of proteomic and genomic data is the potential for developing thousands of novel diagnostic and analytical tests of cells, tissues, and clinical samples. Monoclonal antibody technologies, phage display and mRNA display, are methods that could be used to generate affinity ligands against each member of the proteome. Increasingly, the challenge is not ligand generation, rather the analysis and affinity rank-ordering of the many ligands generated by these methods. Here, we developed a quantitative method to analyze protein interactions using in vitro translated ligands. In this assay, in vitro translated ligands generate a signal by simultaneously binding to a target immobilized on a magnetic bead and to a sensor surface in a commercial acoustic sensing device. We then normalize the binding of each ligand with its relative translation efficiency in order to rank-order the different ligands. We demonstrate the method with peptides directed against the cancer marker Bcl-xL. Our method has 4- to 10-fold higher sensitivity, using 100-fold less protein and 5-fold less antibody per sample, as compared directly with ELISA. Additionally, all analysis can be conducted in complex mixtures at physiological ionic strength. Lastly, we demonstrate the ability to use peptides as ultrahigh affinity reagents that function in complex matrices, as would be needed in diagnostic applications.


Assuntos
Peptídeos/química , Proteínas/química , Proteômica/métodos , Biomarcadores Tumorais/química , Ensaio de Imunoadsorção Enzimática , Separação Imunomagnética , Indicadores e Reagentes , Ligantes , RNA/química , Proteína bcl-X/química
14.
Lab Chip ; 7(10): 1288-93, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17896012

RESUMO

By combining the sensing capabilities of nanoscale magnetic relaxation switches (MRS) within multi-reservoir structures, a potentially powerful implantable multiplexed sensor has been developed. MRS are magnetic nanoparticles that decrease the transverse relaxation time (T(2)) of water in the presence of an analyte. The switches encased in polydimethylsiloxane (PDMS) devices with polycarbonate membranes (10 nm pores) have demonstrated in vitro sensing of the beta subunit of human chorionic gonadotrophin (hCG-beta), which is elevated in testicular and ovarian cancer. Devices showed transverse relaxation time (T(2)) shortening by magnetic resonance imaging (MRI) when incubated in analyte solutions of 0.5 to 5 microg hCG-beta mL(-1). The decrease in T(2) was between 9% and 27% (compared to control devices) after approximately 28 h. This prototype device is an important first step in developing an implantable sensor for detecting soluble cancer biomarkers in vivo.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/instrumentação , Análise Química do Sangue/instrumentação , Análise de Injeção de Fluxo/instrumentação , Magnetismo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias/sangue , Técnicas Biossensoriais/métodos , Análise Química do Sangue/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Injeção de Fluxo/métodos , Humanos , Técnicas Analíticas Microfluídicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...