Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Syst ; 42(8): 133, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915933

RESUMO

Efforts to monitoring and managing hospital capacity depend on the ability to extract relevant time-stamped data from electronic medical records and other information technologies. However, the various characterizations of patient flow, cohort decisions, sub-processes, and the diverse stakeholders requiring data visibility create further overlying complexity. We use the Donabedian model to prioritize patient flow metrics and build an electronic dashboard for enabling communication. Ten metrics were identified as key indicators including outcome (length of stay, 30-day readmission, operating room exit delays, capacity-related diversions), process (timely inpatient unit discharge, emergency department disposition), and structural metrics (occupancy, discharge volume, boarding, bed assignation duration). Dashboard users provided real-life examples of how the tool is assisting capacity improvement efforts, and user traffic data revealed an uptrend in dashboard utilization from May to October 2017 (26 to 148 views per month, respectively). Our main contributions are twofold. The former being the results and methods for selecting key performance indicators for a unit, department, and across the entire hospital (i.e., separating signal from noise). The latter being an electronic dashboard deployed and used at The Johns Hopkins Hospital to visualize these ten metrics and communicate systematically to hospital stakeholders. Integration of diverse information technology may create further opportunities for improved hospital capacity.


Assuntos
Serviço Hospitalar de Emergência , Avaliação de Processos e Resultados em Cuidados de Saúde , Alta do Paciente , Registros Eletrônicos de Saúde , Sistemas de Informação Hospitalar , Hospitais , Humanos
2.
SSM Popul Health ; 3: 211-218, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29349218

RESUMO

Social networks as well as neighborhood environments have been shown to effect obesity-related behaviors including energy intake and physical activity. Accordingly, harnessing social networks to improve targeting of obesity interventions may be promising to the extent this leads to social multiplier effects and wider diffusion of intervention impact on populations. However, the literature evaluating network-based interventions has been inconsistent. Computational methods like agent-based models (ABM) provide researchers with tools to experiment in a simulated environment. We develop an ABM to compare conventional targeting methods (random selection, based on individual obesity risk, and vulnerable areas) with network-based targeting methods. We adapt a previously published and validated model of network diffusion of obesity-related behavior. We then build social networks among agents using a more realistic approach. We calibrate our model first against national-level data. Our results show that network-based targeting may lead to greater population impact. We also present a new targeting method that outperforms other methods in terms of intervention effectiveness at the population level.

3.
J Med Internet Res ; 18(6): e175, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27354313

RESUMO

BACKGROUND: Influenza is a deadly and costly public health problem. Variations in its seasonal patterns cause dangerous surges in emergency department (ED) patient volume. Google Flu Trends (GFT) can provide faster influenza surveillance information than traditional CDC methods, potentially leading to improved public health preparedness. GFT has been found to correlate well with reported influenza and to improve influenza prediction models. However, previous validation studies have focused on isolated clinical locations. OBJECTIVE: The purpose of the study was to measure GFT surveillance effectiveness by correlating GFT with influenza-related ED visits in 19 US cities across seven influenza seasons, and to explore which city characteristics lead to better or worse GFT effectiveness. METHODS: Using Healthcare Cost and Utilization Project data, we collected weekly counts of ED visits for all patients with diagnosis (International Statistical Classification of Diseases 9) codes for influenza-related visits from 2005-2011 in 19 different US cities. We measured the correlation between weekly volume of GFT searches and influenza-related ED visits (ie, GFT ED surveillance effectiveness) per city. We evaluated the relationship between 15 publically available city indicators (11 sociodemographic, two health care utilization, and two climate) and GFT surveillance effectiveness using univariate linear regression. RESULTS: Correlation between city-level GFT and influenza-related ED visits had a median of .84, ranging from .67 to .93 across 19 cities. Temporal variability was observed, with median correlation ranging from .78 in 2009 to .94 in 2005. City indicators significantly associated (P<.10) with improved GFT surveillance include higher proportion of female population, higher proportion with Medicare coverage, higher ED visits per capita, and lower socioeconomic status. CONCLUSIONS: GFT is strongly correlated with ED influenza-related visits at the city level, but unexplained variation over geographic location and time limits its utility as standalone surveillance. GFT is likely most useful as an early signal used in conjunction with other more comprehensive surveillance techniques. City indicators associated with improved GFT surveillance provide some insight into the variability of GFT effectiveness. For example, populations with lower socioeconomic status may have a greater tendency to initially turn to the Internet for health questions, thus leading to increased GFT effectiveness. GFT has the potential to provide valuable information to ED providers for patient care and to administrators for ED surge preparedness.


Assuntos
Serviço Hospitalar de Emergência/estatística & dados numéricos , Influenza Humana/epidemiologia , Internet , Ferramenta de Busca/tendências , Adolescente , Adulto , Idoso , Monitoramento Epidemiológico , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Estações do Ano , Análise Espacial , Fatores de Tempo , Estados Unidos/epidemiologia , Adulto Jovem
4.
Int J Prev Med ; 4(10): 1122-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24319551

RESUMO

BACKGROUND: Cancer is a major health problem in the developing countries. Variations of its incidence rate among geographical areas are due to various contributing factors. This study was performed to assess the spatial patterns of cancer incidence in the Fars Province, based on cancer registry data and to determine geographical clusters. METHODS: In this cross sectional study, the new cases of cancer were recorded from 2001 to 2009. Crude incidence rate was estimated based on age groups and sex in the counties of the Fars Province. Age-standardized incidence rates (ASR) per 100,000 was calculated in each year. Spatial autocorrelation analysis was performed in measuring the geographic patterns and clusters using geographic information system (GIS). Also, comparisons were made between ASRs in each county. RESULTS: A total of 28,411 new cases were diagnosed with cancer during 2001-2009 in the Fars Province, 55.5% of which were men. The average age was 61.6 ± 0.5 years. The highest ASR was observed in Shiraz, which is the largest county in Fars. The Moran's Index of cancer was significantly clustered in 2004, 2005, and 2006 in total, men, and women. The type of spatial clustering was high-high cluster, that to indicate from north-west to south-east of Fars Province. CONCLUSIONS: Analysis of the spatial distribution of cancer shows significant differences from year to year and between different areas. However, a clear spatial autocorrelation is observed, which can be of great interest and importance to researchers for future epidemiological studies, and to policymakers for applying preventive measures.

5.
PLoS One ; 8(2): e56176, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457520

RESUMO

BACKGROUND: We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. METHODS: Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. RESULTS: A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. CONCLUSIONS: Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by individual medical centers to provide advanced warning of future influenza cases.


Assuntos
Influenza Humana/epidemiologia , Ferramenta de Busca/métodos , Adulto , Criança , Surtos de Doenças , Humanos , Modelos Lineares , Modelos Biológicos , Vigilância da População , Estações do Ano , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...