Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257122

RESUMO

BackgroundThe aim of this prospective cohort study was to determine the burden of SARS-CoV-2 in air and on surfaces in rooms of patients hospitalized with COVID-19, and to identify patient characteristics associated with SARS-CoV-2 environmental contamination. MethodsNasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at six acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 viral RNA and cultured to determine potential infectivity. Whole viral genomes were sequenced from nasopharyngeal and surface samples. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated using a mixed-effects logistic regression model. FindingsSARS-CoV-2 RNA was detected from surfaces (125/474 samples; 42/78 patients) and air (3/146 samples; 3/45 patients) in COVID-19 patient rooms; 17% (6/36) of surface samples from three patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, a PCR-positive nasopharyngeal swab with a cycle threshold of [≤]30 on or after surface sampling date, higher Charlson co-morbidity score, and shorter time from onset of illness to sample date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. InterpretationThe infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited. Surface contamination was greater when patients were earlier in their course of illness and in those with hypoxia, multiple co-morbidities, and higher SARS-CoV-2 RNA concentration in NP swabs. Our results suggest that air and surfaces may pose limited risk a few days after admission to acute care hospitals.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-037382

RESUMO

SARS-CoV-2 emerged in December 2019 in Wuhan, China and has since infected over 1.5 million people, of which over 107,000 have died. As SARS-CoV-2 spreads across the planet, speculations remain about the range of human cells that can be infected by SARS-CoV-2. In this study, we report the isolation of SARS-CoV-2 from two COVID-19 patients in Toronto, Canada. We determined the genomic sequences of the two isolates and identified single nucleotide changes in representative populations of our virus stocks. More importantly, we tested a wide range of human immune cells for productive infection with SARS-CoV-2. Here we confirm that human primary peripheral blood mononuclear cells (PBMCs) are not permissive to SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor small nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine cell susceptibility and pathogenicity using in vitro and in vivo infection models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...