Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876915

RESUMO

During severe or chronic hepatic injury, biliary epithelial cells (BECs) undergo rapid activation into proliferating progenitors, a crucial step required to establish a regenerative process known as ductular reaction (DR). While DR is a hallmark of chronic liver diseases, including advanced stages of non-alcoholic fatty liver disease (NAFLD), the early events underlying BEC activation are largely unknown. Here, we demonstrate that BECs readily accumulate lipids during high-fat diet feeding in mice and upon fatty acid treatment in BEC-derived organoids. Lipid overload induces metabolic rewiring to support the conversion of adult cholangiocytes into reactive BECs. Mechanistically, we found that lipid overload activates the E2F transcription factors in BECs, which drive cell cycle progression while promoting glycolytic metabolism. These findings demonstrate that fat overload is sufficient to reprogram BECs into progenitor cells in the early stages of NAFLD and provide new insights into the mechanistic basis of this process, revealing unexpected connections between lipid metabolism, stemness, and regeneration.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Células Epiteliais/metabolismo , Divisão Celular , Lipídeos
2.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719750

RESUMO

The nonessential amino acid asparagine can only be synthesized de novo by the enzymatic activity of asparagine synthetase (ASNS). While ASNS and asparagine have been implicated in the response to numerous metabolic stressors in cultured cells, the in vivo relevance of this enzyme in stress-related pathways remains unexplored. Here, we found ASNS to be expressed in pericentral hepatocytes, a population of hepatic cells specialized in xenobiotic detoxification. ASNS expression was strongly enhanced in 2 models of acute liver injury: carbon tetrachloride (CCl4) and acetaminophen. We found that mice with hepatocyte-specific Asns deletion were more prone to pericentral liver damage than their control littermates after toxin exposure. This phenotype could be reverted by i.v. administration of asparagine. Unexpectedly, the stress-induced upregulation of ASNS involved an ATF4-independent, noncanonical pathway mediated by the nuclear receptor, liver receptor homolog 1 (LRH-1; NR5A2). Altogether, our data indicate that the induction of the asparagine-producing enzyme ASNS acts as an adaptive mechanism to constrain the necrotic wave that follows toxin administration and provide proof of concept that i.v. delivery of asparagine can dampen hepatotoxin-induced pericentral hepatocellular death.


Assuntos
Asparagina , Hepatócitos , Animais , Camundongos , Aminoácidos , Fígado
3.
Cell Death Dis ; 13(9): 758, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056008

RESUMO

Metastatic breast cancer cannot be cured, and alteration of fatty acid metabolism contributes to tumor progression and metastasis. Here, we were interested in the elongation of very long-chain fatty acids protein 5 (Elovl5) in breast cancer. We observed that breast cancer tumors had a lower expression of Elovl5 than normal breast tissues. Furthermore, low expression of Elovl5 is associated with a worse prognosis in ER+ breast cancer patients. In accordance with this finding, decrease of Elovl5 expression was more pronounced in ER+ breast tumors from patients with metastases in lymph nodes. Although downregulation of Elovl5 expression limited breast cancer cell proliferation and cancer progression, suppression of Elovl5 promoted EMT, cell invasion and lung metastases in murine breast cancer models. The loss of Elovl5 expression induced upregulation of TGF-ß receptors mediated by a lipid-droplet accumulation-dependent Smad2 acetylation. As expected, inhibition of TGF-ß receptors restored proliferation and dampened invasion in low Elovl5 expressing cancer cells. Interestingly, the abolition of lipid-droplet formation by inhibition of diacylglycerol acyltransferase activity reversed induction of TGF-ß receptors, cell invasion, and lung metastasis triggered by Elovl5 knockdown. Altogether, we showed that Elovl5 is involved in metastasis through lipid droplets-regulated TGF-ß receptor expression and is a predictive biomarker of metastatic ER+ breast cancer.


Assuntos
Neoplasias da Mama , Elongases de Ácidos Graxos/metabolismo , Neoplasias Pulmonares , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Lipídeos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Metástase Neoplásica , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Anesthesiology ; 136(2): 293-313, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965287

RESUMO

BACKGROUND: Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. METHODS: Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously. The same settings were then repeated during pneumococcal pneumonia. Finally, infected animals during adverse mechanical ventilation received human umbilical cord-derived mesenchymal stem cells (3 × 106/kg, intravenous) and/or ceftaroline (20 mg/kg, intramuscular) or sodium chloride, 4 h after pneumococcal challenge. Twenty-four-hour survival (primary outcome), lung injury, bacterial burden, immune and mitochondrial dysfunction, and lung transcriptomes (secondary outcomes) were assessed. RESULTS: High-pressure adverse mechanical ventilation reduced the survival of infected animals (0%; 0 of 7) compared with spontaneous breathing (100%; 7 of 7) and protective mechanical ventilation (86%; 6 of 7; both P < 0.001), with higher lung pathology scores (median [interquartile ranges], 5.5 [4.5 to 7.0] vs. 12.6 [12.0 to 14.0]; P = 0.046), interleukin-8 lung concentrations (106 [54 to 316] vs. 804 [753 to 868] pg/g of lung; P = 0.012), and alveolar mitochondrial DNA release (0.33 [0.28 to 0.36] vs. 0.98 [0.76 to 1.21] ng/µl; P < 0.001) compared with infected spontaneously breathing animals. Survival (0%; 0 of 7; control group) was improved by mesenchymal stem cells (57%; 4 of 7; P = 0.001) or ceftaroline alone (57%; 4 of 7; P < 0.001) and improved even more with a combination treatment (86%; 6 of 7; P < 0.001). Mesenchymal stem cells reduced lung pathology score (8.5 [7.0 to 10.5] vs. 12.6 [12.0 to 14.0]; P = 0.043) and alveolar mitochondrial DNA release (0.39 (0.34 to 0.65) vs. 0.98 (0.76 to 1.21) ng/µl; P = 0.025). Mesenchymal stem cells combined with ceftaroline reduced interleukin-8 lung concentrations (665 [595 to 795] vs. 804 [753 to 868] pg/g of lung; P = 0.007) compared to ceftaroline alone. CONCLUSIONS: In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Imunidade Celular/fisiologia , Mitocôndrias/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/terapia , Respiração Artificial/efeitos adversos , Animais , Masculino , Células-Tronco Mesenquimais/fisiologia , Mitocôndrias/metabolismo , Pneumonia Pneumocócica/metabolismo , Estudos Prospectivos , Coelhos , Distribuição Aleatória
5.
Nat Immunol ; 22(11): 1403-1415, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686867

RESUMO

Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Ativação de Macrófagos , Melanoma/metabolismo , Lipídeos de Membrana/metabolismo , Neoplasias Cutâneas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Retículo Endoplasmático/ultraestrutura , Glucosilceramidase/metabolismo , Membranas Intracelulares/ultraestrutura , Melanoma/genética , Melanoma/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/ultraestrutura , Evasão Tumoral , Microambiente Tumoral , Macrófagos Associados a Tumor/ultraestrutura , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
6.
Nat Commun ; 12(1): 5255, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489438

RESUMO

Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling.


Assuntos
Tecido Adiposo Marrom/citologia , Monócitos/fisiologia , Adiponectina/genética , Tecido Adiposo Marrom/fisiologia , Animais , Diferenciação Celular/genética , Contagem de Leucócitos , Macrófagos/citologia , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Monócitos/citologia , Tomografia por Emissão de Pósitrons , Receptores CCR2/genética , Receptores CCR2/metabolismo
7.
Sci Rep ; 11(1): 10824, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031519

RESUMO

COVID-19 pneumonia has specific features and outcomes that suggests a unique immunopathogenesis. Severe forms of COVID-19 appear to be more frequent in obese patients, but an association with metabolic disorders is not established. Here, we focused on lipoprotein metabolism in patients hospitalized for severe pneumonia, depending on COVID-19 status. Thirty-four non-COVID-19 and 27 COVID-19 patients with severe pneumonia were enrolled. Most of them required intensive care. Plasma lipid levels, lipoprotein metabolism, and clinical and biological (including plasma cytokines) features were assessed. Despite similar initial metabolic comorbidities and respiratory severity, COVID-19 patients displayed a lower acute phase response but higher plasmatic concentrations of non-esterified fatty acids (NEFAs). NEFA profiling was characterised by higher level of polyunsaturated NEFAs (mainly linoleic and arachidonic acids) in COVID-19 patients. Multivariable analysis showed that among severe pneumonia, COVID-19-associated pneumonia was associated with higher NEFAs, lower apolipoprotein E and lower high-density lipoprotein cholesterol concentrations, independently of body mass index, sequential organ failure (SOFA) score, and C-reactive protein levels. NEFAs and PUFAs concentrations were negatively correlated with the number of ventilator-free days. Among hospitalized patients with severe pneumonia, COVID-19 is independently associated with higher NEFAs (mainly linoleic and arachidonic acids) and lower apolipoprotein E and HDL concentrations. These features might act as mediators in COVID-19 pathogenesis and emerge as new therapeutic targets. Further investigations are required to define the role of NEFAs in the pathogenesis and the dysregulated immune response associated with COVID-19.Trial registration: NCT04435223.


Assuntos
COVID-19/patologia , Ácidos Graxos não Esterificados/sangue , Idoso , Apolipoproteínas E/sangue , Ácidos Araquidônicos/sangue , COVID-19/sangue , COVID-19/virologia , HDL-Colesterol/sangue , Citocinas/sangue , Feminino , Humanos , Ácidos Linoleicos/sangue , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença
8.
Front Immunol ; 12: 622935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054798

RESUMO

Introduction: During peritonitis, lipopolysaccharides (LPS) cross the peritoneum and pass through the liver before reaching the central compartment. The aim of the present study was to investigate the role of lipoproteins and phospholipid transfer protein (PLTP) in the early stages of LPS detoxification. Material and Methods: Peritonitis was induced by intra-peritoneal injection of LPS in mice. We analyzed peritoneal fluid, portal and central blood. Lipoprotein fractions were obtained by ultracentrifugation and fast protein liquid chromatography. LPS concentration and activity were measured by liquid chromatography coupled with mass spectrometry and limulus amoebocyte lysate. Wild-type mice were compared to mice knocked out for PLTP. Results: In mice expressing PLTP, LPS was able to bind to HDL in the peritoneal compartment, and this was maintained in plasma from portal and central blood. A hepatic first-pass effect of HDL-bound LPS was observed in wild-type mice. LPS binding to HDL resulted in an early arrival of inactive LPS in the central blood of wild-type mice. Conclusion: PLTP promotes LPS peritoneal clearance and neutralization in a model of peritonitis. This mechanism involves the early binding of LPS to lipoproteins inside the peritoneal cavity, which promotes LPS translocation through the peritoneum and its uptake by the liver.


Assuntos
Líquido Ascítico/metabolismo , Lipopolissacarídeos/sangue , Lipoproteínas HDL/sangue , Peritônio/metabolismo , Peritonite/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/sangue , Peritonite/induzido quimicamente , Proteínas de Transferência de Fosfolipídeos/sangue , Proteínas de Transferência de Fosfolipídeos/genética , Ligação Proteica , Fatores de Tempo
9.
J Lipid Res ; 62: 100013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518513

RESUMO

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell-membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3's role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approximately 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase
10.
Br J Pharmacol ; 178(16): 3124-3139, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33377180

RESUMO

BACKGROUND AND PURPOSE: Subset of macrophages within the atheroma plaque displays a high glucose uptake activity. Nevertheless, the molecular mechanisms and the pathophysiological significance of this high glucose need remain unclear. While the role for hypoxia and hypoxia inducible factor 1α has been demonstrated, the contribution of lipid micro-environment and more specifically oxysterols is yet to be explored. EXPERIMENTAL APPROACH: Human macrophages were conditioned in the presence of homogenates from human carotid plaques, and expression of genes involved in glucose metabolism was quantified. Correlative analyses between gene expression and the oxysterol composition of plaques were performed. KEY RESULTS: Conditioning of human macrophages by plaque homogenates induces expression of several genes involved in glucose uptake and glycolysis including glucose transporter 1 (SLC2A1) and hexokinases 2 and 3 (HK2 and HK3). This activation is significantly correlated to the oxysterol content of the plaque samples and is associated with a significant increase in the glycolytic activity of the cells. Pharmacological inverse agonist of the oxysterol receptor liver X receptor (LXR) partially reverses the induction of glycolysis genes without affecting macrophage glycolytic activity. Chromatin immunoprecipitation analysis confirms the implication of LXR in the regulation of SLC2A1 and HK2 genes. CONCLUSION AND IMPLICATIONS: While our work supports the role of oxysterols and the LXR in the modulation of macrophage metabolism in atheroma plaques, it also highlights some LXR-independent effects of plaques samples. Finally, this study identifies hexokinase 3 as a promising target in the context of atherosclerosis. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Assuntos
Aterosclerose , Oxisteróis , Aterosclerose/genética , Glicólise , Humanos , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo
11.
J Clin Invest ; 130(11): 5858-5874, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32759503

RESUMO

Mitochondria have emerged as key actors of innate and adaptive immunity. Mitophagy has a pivotal role in cell homeostasis, but its contribution to macrophage functions and host defense remains to be delineated. Here, we showed that lipopolysaccharide (LPS) in combination with IFN-γ inhibited PINK1-dependent mitophagy in macrophages through a STAT1-dependent activation of the inflammatory caspases 1 and 11. In addition, we demonstrated that the inhibition of mitophagy triggered classical macrophage activation in a mitochondrial ROS-dependent manner. In a murine model of polymicrobial infection (cecal ligature and puncture), adoptive transfer of Pink1-deficient bone marrow or pharmacological inhibition of mitophagy promoted macrophage activation, which favored bactericidal clearance and led to a better survival rate. Reciprocally, mitochondrial uncouplers that promote mitophagy reversed LPS/IFN-γ-mediated activation of macrophages and led to immunoparalysis with impaired bacterial clearance and lowered survival. In critically ill patients, we showed that mitophagy was inhibited in blood monocytes of patients with sepsis as compared with nonseptic patients. Overall, this work demonstrates that the inhibition of mitophagy is a physiological mechanism that contributes to the activation of myeloid cells and improves the outcome of sepsis.


Assuntos
Bactérias/imunologia , Ativação de Macrófagos , Macrófagos Peritoneais/imunologia , Mitofagia/imunologia , Sepse/imunologia , Animais , Feminino , Humanos , Interferon gama/imunologia , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Proteínas Quinases/imunologia , Células RAW 264.7 , Sepse/microbiologia , Sepse/patologia
12.
Cell Rep ; 31(7): 107665, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433974

RESUMO

Low-grade inflammation is constitutive of atherosclerosis, and anti-inflammatory therapy inhibiting interleukin-1ß (IL-1ß) reduces the rate of cardiovascular events. While cholesterol accumulation in atheroma plaque and macrophages is a major driver of the inflammatory process, the role of the LXR cholesterol sensors remains to be clarified. Murine and human macrophages were treated with LXR agonists for 48 h before Toll-like receptor (TLR) stimulation. Unexpectedly, we observe that, among other cytokines, LXR agonists selectively increase IL1B mRNA levels independently of TLR activation. This effect, restricted to human macrophages, is mediated by activation of HIF-1α through LXR. Accordingly, LXR agonists also potentiate other HIF-1α-dependent pathways, such as glycolysis. Treatment of human macrophages with carotid plaque homogenates also leads to induction of IL1B in an LXR-dependent manner. Thus, our work discloses a mechanism by which cholesterol and oxysterols trigger inflammation in atherosclerosis. This suggests perspectives to target IL-1ß production in atherosclerotic patients.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-1beta/biossíntese , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Animais , Aterosclerose/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Receptores X do Fígado/agonistas , Receptores X do Fígado/antagonistas & inibidores , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Atherosclerosis ; 291: 52-61, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31693943

RESUMO

Among the pathways involved in the regulation of macrophage functions, the metabolism of unsaturated fatty acids is central. Indeed, unsaturated fatty acids act as precursors of bioactive molecules such as prostaglandins, leukotrienes, resolvins and related compounds. As components of phospholipids, they have a pivotal role in cell biology by regulating membrane fluidity and membrane-associated cellular processes. Finally, polyunsaturated fatty acids (PUFAs) are also endowed with ligand properties for numerous membrane or nuclear receptors. Although myeloid cells are dependent on the metabolic context for the uptake of essential FAs, recent studies showed that these cells autonomously handle the synthesis of n-3 and n-6 long chain PUFAs such as arachidonic acid and eicosapentaenoic acid. Moreover, targeting PUFA metabolism in macrophages influences pathological processes, including atherosclerosis, by modulating macrophage functions. Omics evidence also supports a role for macrophage PUFA metabolism in the development of cardiometabolic diseases in humans. Currently, there is a renewed interest in the role of n-3/n-6 PUFAs and their oxygenated derivatives in the onset of atherosclerosis and plaque rupture. Purified n-3 FA supplementation appears as a potential strategy in the treatment and prevention of cardiovascular diseases. In this context, the ability of immune cells to handle and to synthesize very long chain PUFA must absolutely be integrated and better understood.


Assuntos
Aterosclerose/metabolismo , Ácidos Graxos Insaturados/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Ácidos Graxos Insaturados/uso terapêutico , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Prognóstico , Fatores de Risco , Ruptura Espontânea , Transdução de Sinais
15.
Int J Mol Sci ; 20(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382500

RESUMO

Liver X receptors (LXRs) play a pivotal role in fatty acid (FA) metabolism. So far, the lipogenic consequences of in vivo LXR activation, as characterized by a major hepatic steatosis, has constituted a limitation to the clinical development of pharmacological LXR agonists. However, recent studies provided a different perspective. Beyond the quantitative accumulation of FA, it appears that LXRs induce qualitative changes in the FA profile and in the distribution of FAs among cellular lipid species. Thus, LXRs activate the production of polyunsaturated fatty acids (PUFAs) and their distribution into phospholipids via the control of FA desaturases, FA elongases, lysophosphatidylcholine acyltransferase (LPCAT3), and phospholipid transfer protein (PLTP). Therefore, LXRs control, in a dynamic manner, the PUFA composition and the physicochemical properties of cell membranes as well as the release of PUFA-derived lipid mediators. Recent studies suggest that modulation of PUFA and phospholipid metabolism by LXRs are involved in the control of lipogenesis and lipoprotein secretion by the liver. In myeloid cells, the interplay between LXR and PUFA metabolism affects the inflammatory response. Revisiting the complex role of LXRs in FA metabolism may open new opportunities for the development of LXR modulators in the field of cardiometabolic diseases.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Fosfolipídeos/metabolismo , Animais , Homeostase , Humanos , Inflamação/metabolismo , Lipogênese , Lipoproteínas VLDL/metabolismo
16.
Atherosclerosis ; 275: 409-418, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866392

RESUMO

BACKGROUND AND AIMS: LPCAT3 plays a major role in phospholipid metabolism in the liver and intestine. However, the impact of LPCAT3 on hematopoietic cell and macrophage functions has yet to be described. Our aim was to understand the functions of LPCAT3 in macrophages and to investigate whether LPCAT3 deficiency in hematopoietic cells may affect atherosclerosis development. METHODS: Mice with constitutive Lpcat3 deficiency (Lpcat3-/-) were generated. We used fetal hematopoietic liver cells to generate WT and Lpcat3-/- macrophages in vitro and to perform hematopoietic cell transplantation in recipient Ldlr-/- mice. RESULTS: Lpcat3-deficient macrophages displayed major reductions in the arachidonate content of phosphatidylcholines, phosphatidylethanolamines and, unexpectedly, plasmalogens. These changes were associated with altered cholesterol homeostasis, including an increase in the ratio of free to esterified cholesterol and a reduction in cholesterol efflux in Lpcat3-/- macrophages. This correlated with the inhibition of some LXR-regulated pathways, related to altered cellular availability of the arachidonic acid. Indeed, LPCAT3 deficiency was associated with decreased Abca1, Abcg1 and ApoE mRNA levels in fetal liver cells derived macrophages. In vivo, these changes translated into a significant increase in atherosclerotic lesions in Ldlr-/- mice with hematopoietic LPCAT3 deficiency. CONCLUSIONS: This study identifies LPCAT3 as a key factor in the control of phospholipid homeostasis and arachidonate availability in myeloid cells and underlines a new role for LPCAT3 in plasmalogen metabolism. Moreover, our work strengthens the link between phospholipid and sterol metabolism in hematopoietic cells, with significant consequences on nuclear receptor-regulated pathways and atherosclerosis development.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/deficiência , Aterosclerose/enzimologia , Colesterol/metabolismo , Células-Tronco Hematopoéticas/enzimologia , Macrófagos/enzimologia , Fosfolipídeos/metabolismo , Placa Aterosclerótica , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ácido Araquidônico/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Predisposição Genética para Doença , Transplante de Células-Tronco Hematopoéticas , Receptores X do Fígado/metabolismo , Macrófagos/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...