Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Neurotrauma ; 41(13-14): 1550-1564, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38468502

RESUMO

Cerebral microdialysis (CMD) catheters allow continuous monitoring of patients' cerebral metabolism in severe traumatic brain injury (TBI). The catheters consist of a terminal semi-permeable membrane that is inserted into the brain's interstitium to allow perfusion fluid to equalize with the surrounding cerebral extracellular environment before being recovered through a central non-porous channel. However, it is unclear how far recovered fluid and suspended metabolites have diffused from within the brain, and therefore what volume or region of brain tissue the analyses of metabolism represent. We assessed diffusion of the small magnetic resonance (MR)-detectible molecule gadobutrol from microdialysis catheters in six subjects (complete data five subjects, incomplete data one subject) who had sustained a severe TBI. Diffusion pattern and distance in cerebral white matter were assessed using T1 (time for MR spin-lattice relaxation) maps at 1 mm isotropic resolution in a 3 Tesla MR scanner. Gadobutrol at 10 mmol/L diffused from cerebral microdialysis catheters in a uniform spheroidal (ellipsoid of revolution) pattern around the catheters' semipermeable membranes, and across gray matter-white matter boundaries. Evidence of gadobutrol diffusion was found up to a mean of 13.4 ± 0.5 mm (mean ± standard deviation [SD]) from catheters, but with a steep concentration drop off so that ≤50% of maximum concentration was achieved at ∼4 mm, and ≤10% of maximum was found beyond ∼7 mm from the catheters. There was little variation between subjects. The relaxivity of gadobutrol in human cerebral white matter was estimated to be 1.61 ± 0.38 L.mmol-1sec-1 (mean ± SD); assuming gadobutrol remained extracellular thereby occupying 20% of total tissue volume (interstitium), and concentration equilibrium with perfusion fluid was achieved immediately adjacent to catheters after 24 h of perfusion. No statistically significant change was found in the concentration of the extracellular metabolites glucose, lactate, pyruvate, nor the lactate/pyruvate ratio during gadobutrol perfusion when compared with period of baseline microdialysis perfusion. Cerebral microdialysis allows continuous monitoring of regional cerebral metabolism-the volume of which is now clearer from this study. It also has the potential to deliver small molecule therapies to focal pathologies of the human brain. This study provides a platform for future development of new catheters optimally designed to treat such conditions.


Assuntos
Lesões Encefálicas Traumáticas , Imageamento por Ressonância Magnética , Microdiálise , Compostos Organometálicos , Humanos , Microdiálise/métodos , Microdiálise/instrumentação , Masculino , Adulto , Feminino , Imageamento por Ressonância Magnética/métodos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Adulto Jovem , Difusão , Meios de Contraste , Catéteres
2.
JMIR Form Res ; 8: e54194, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354022

RESUMO

BACKGROUND: Accurate head circumference (HC) measurement is essential when assessing neonates and infants. Tape measure HC measurements are prone to errors, particularly when performed by parents/guardians, due to individual differences in head shape, hair style and texture, subject cooperation, and examiner techniques, including tape measure placement and tautness. There is, therefore, the need for a more reliable method. OBJECTIVE: The primary objective of this study was to evaluate the validity, reliability, and consistency of HC app measurement compared to the current standard of practice, serving as a proof-of-concept for use by health care professionals. METHODS: We recruited infants attending the neurosurgery clinic, and parents/guardians were approached and consented to participate in the study. Along with the standard head circumference measurement, measurements were taken with the head circumference app (HC app) developed in-house, and we also collected baseline medical history and characteristics. For the statistical analysis, we used RStudio (version 4.1.1). In summary, we analyzed covariance and intraclass correlation coefficient (ICC) to compare the measurement's within-rater and interrater reliability. The F test was used to analyze the variance between measurements and the Bland-Altman agreement, t test, and correlation coefficients were used to compare the tape measurement to the measures taken by the HC app. We also used nonvalidated questionnaires to explore parental or guardians' experiences, assess their views on app utility, and collect feedback. RESULTS: The total number of recruited patients was 37. Comparison between the app measurements and the measurements with a tape measure showed poor reliability (ICC=0.177) and wide within-app variations (ICC=0.341). The agreement between the measurements done by parents/guardians and the tape measurements done by the researcher was good (ICC=0.901). Parental/guardian feedback was overall very positive, with most of the parents/guardians reporting that the app was easy to use (n=31, 84%) and that they are happy to use the app in an unsupervised setting, provided that they are assured of the measurement quality. CONCLUSIONS: We developed this project as a proof-of-concept study, and as such, the app has shown great potential to be used both in a clinical setting and by parents/guardians in their own homes.

3.
Neurocrit Care ; 40(1): 147-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37386341

RESUMO

Traumatic brain injury remains a major cause of mortality and morbidity in children across the world. Current management based on international guidelines focuses on a fixed therapeutic target of less than 20 mm Hg for managing intracranial pressure and 40-50 mm Hg for cerebral perfusion pressure across the pediatric age group. To improve outcome from this complex disease, it is essential to understand the pathophysiological mechanisms responsible for disease evolution by using different monitoring tools. In this narrative review, we discuss the neuromonitoring tools available for use to help guide management of severe traumatic brain injury in children and some of the techniques that can in future help with individualizing treatment targets based on advanced cerebral physiology monitoring.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Criança , Humanos , Lesões Encefálicas Traumáticas/terapia , Pressão Intracraniana/fisiologia , Circulação Cerebrovascular/fisiologia , Encéfalo
4.
J Cereb Blood Flow Metab ; 43(10): 1685-1701, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157814

RESUMO

How to optimise glucose metabolism in the traumatised human brain remains unclear, including whether injured brain can metabolise additional glucose when supplied. We studied the effect of microdialysis-delivered 1,2-13C2 glucose at 4 and 8 mmol/L on brain extracellular chemistry using bedside ISCUSflex, and the fate of the 13C label in the 8 mmol/L group using high-resolution NMR of recovered microdialysates, in 20 patients. Compared with unsupplemented perfusion, 4 mmol/L glucose increased extracellular concentrations of pyruvate (17%, p = 0.04) and lactate (19%, p = 0.01), with a small increase in lactate/pyruvate ratio (5%, p = 0.007). Perfusion with 8 mmol/L glucose did not significantly influence extracellular chemistry measured with ISCUSflex, compared to unsupplemented perfusion. These extracellular chemistry changes appeared influenced by the underlying metabolic states of patients' traumatised brains, and the presence of relative neuroglycopaenia. Despite abundant 13C glucose supplementation, NMR revealed only 16.7% 13C enrichment of recovered extracellular lactate; the majority being glycolytic in origin. Furthermore, no 13C enrichment of TCA cycle-derived extracellular glutamine was detected. These findings indicate that a large proportion of extracellular lactate does not originate from local glucose metabolism, and taken together with our earlier studies, suggest that extracellular lactate is an important transitional step in the brain's production of glutamine.


Assuntos
Glucose , Glutamina , Humanos , Glucose/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Microdiálise , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Suplementos Nutricionais
5.
Front Neurol ; 14: 1085540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895905

RESUMO

Cerebral microdialysis may be used in patients with severe brain injury to monitor their cerebral physiology. In this article we provide a concise synopsis with illustrations and original images of catheter types, their structure, and how they function. Where and how catheters are inserted, their identification on imaging modalities (CT and MRI), together with the roles of glucose, lactate/pyruvate ratio, glutamate, glycerol and urea are summarized in acute brain injury. The research applications of microdialysis including pharmacokinetic studies, retromicrodialysis, and its use as a biomarker for efficacy of potential therapies are outlined. Finally, we explore limitations and pitfalls of the technique, as well as potential improvements and future work that is needed to progress and expand the use of this technology.

6.
Childs Nerv Syst ; 39(6): 1537-1544, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36949251

RESUMO

PURPOSE: The aim of the project was to evaluate intra-CSF etoposide administration in a palliative setting for children and young people with relapsed/refractory central nervous system (CNS) tumours, with the primary endpoints being overall survival and progression-free survival time. A safety endpoint was to assess the side effect profile and complications of intra-CSF etoposide. METHODS: Thirty-five patients under the age of 30 years (median age: 5.33 years) were enrolled onto the project. The cross-centre study was a service evaluation, with a data collection spreadsheet designed in Nottingham and completed by both Nottingham and Oxford centres. Data was analysed using SPSS, assessing the overall survival and progression-free survival times, as well as the 6-month and 1-year survival rates. RESULTS: The median overall survival and progression-free survival times were 10.97 and 5.91 months, respectively. The 6-month and 1-year overall survival rates were 67% and 48%, and the progression-free survival rates were 50% and 22%. Age at the start of intra-CSF therapy was significantly associated with overall survival (P = 0.046), with the 6 + age group having improved overall survival. Treatment type was significantly associated with overall survival (P = 0.012), with etoposide intra-CSF treatment being associated with improved overall survival. Treatment duration was significantly associated with both overall survival (P < 0.001) and progression-free survival (P < 0.001). CONCLUSION: Intra-CSF etoposide treatment has shown to increase both overall and progression-free survival significantly, whilst having few side effects and maintaining a good quality of life for patients, reflecting it as a beneficial therapy in the palliative setting.


Assuntos
Neoplasias do Sistema Nervoso Central , Qualidade de Vida , Humanos , Criança , Adolescente , Pré-Escolar , Adulto , Etoposídeo , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Intervalo Livre de Progressão
8.
Childs Nerv Syst ; 38(10): 1903-1906, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35796861

RESUMO

INTRODUCTION: Post-haemorrhagic hydrocephalus is common amongst premature infants and one of the leading indications for paediatric cerebrospinal fluid (CSF) diversion. Permanent CSF diversion is often delayed until the infant is older but there is no clear consensus on the timing for this. The outcomes for permanent shunting in this patient group are poor, with higher rates of failure and infection compared to other aetiologies of hydrocephalus. METHODS: We conduct a single-centre retrospective review of infants with post-haemorrhagic hydrocephalus requiring a permanent shunt insertion over a 5-year period. Demographic and clinical data from time of shunt insertion were collected and used to generate generalised linear models (GLMs) to predict shunt success at 12 months after insertion. RESULTS: Twenty-six infants underwent permanent shunting in this period for post-haemorrhagic hydrocephalus, with 10 suffering shunt failure within the first 12 months. The best-performing GLM was able to predict shunt success with a sensitivity of 1 and specificity of 0.90, with head circumference, weight, and corrected age at the time of shunt insertion being the most significantly associated variables for shunt success in this model. CONCLUSION: Our proof-of-principle study suggests that highly accurate prediction of shunt success for infants with post-haemorrhagic hydrocephalus is possible using routinely available clinical variables. Further work is required to test this model in larger cohorts and validate whether pre-operative use can improve outcomes for this patient group.


Assuntos
Hidrocefalia , Doenças do Prematuro , Derivações do Líquido Cefalorraquidiano/efeitos adversos , Criança , Humanos , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/cirurgia , Estudos Retrospectivos , Derivação Ventriculoperitoneal/efeitos adversos
9.
J Cereb Blood Flow Metab ; 42(1): 39-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494481

RESUMO

Following traumatic brain injury (TBI), raised cerebral lactate/pyruvate ratio (LPR) reflects impaired energy metabolism. Raised LPR correlates with poor outcome and mortality following TBI. We prospectively recruited patients with TBI requiring neurocritical care and multimodal monitoring, and utilised a tiered management protocol targeting LPR. We identified patients with persistent raised LPR despite adequate cerebral glucose and oxygen provision, which we clinically classified as cerebral 'mitochondrial dysfunction' (MD). In patients with TBI and MD, we administered disodium 2,3-13C2 succinate (12 mmol/L) by retrodialysis into the monitored region of the brain. We recovered 13C-labelled metabolites by microdialysis and utilised nuclear magnetic resonance spectroscopy (NMR) for identification and quantification.Of 33 patients with complete monitoring, 73% had MD at some point during monitoring. In 5 patients with multimodality-defined MD, succinate administration resulted in reduced LPR(-12%) and raised brain glucose(+17%). NMR of microdialysates demonstrated that the exogenous 13C-labelled succinate was metabolised intracellularly via the tricarboxylic acid cycle. By targeting LPR using a tiered clinical algorithm incorporating intracranial pressure, brain tissue oxygenation and microdialysis parameters, we identified MD in TBI patients requiring neurointensive care. In these, focal succinate administration improved energy metabolism, evidenced by reduction in LPR. Succinate merits further investigation for TBI therapy.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Succínico/administração & dosagem , Adulto , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Feminino , Humanos , Pressão Intracraniana/efeitos dos fármacos , Ácido Láctico/metabolismo , Masculino , Microdiálise , Pessoa de Meia-Idade , Ressonância Magnética Nuclear Biomolecular , Ácido Pirúvico/metabolismo
10.
Nat Genet ; 53(6): 861-868, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34083789

RESUMO

Microglia, the tissue-resident macrophages of the central nervous system (CNS), play critical roles in immune defense, development and homeostasis. However, isolating microglia from humans in large numbers is challenging. Here, we profiled gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery. Using single-cell and bulk RNA sequencing, we identify how age, sex and clinical pathology influence microglia gene expression and which genetic variants have microglia-specific functions using expression quantitative trait loci (eQTL) mapping. We follow up one of our findings using a human induced pluripotent stem cell-based macrophage model to fine-map a candidate causal variant for Alzheimer's disease at the BIN1 locus. Our study provides a population-scale transcriptional map of a critically important cell for human CNS development and disease.


Assuntos
Regulação da Expressão Gênica , Microglia/metabolismo , Transcrição Gênica , Doença de Alzheimer/genética , Humanos , Modelos Genéticos , Locos de Características Quantitativas/genética , Análise de Sequência de RNA , Análise de Célula Única
12.
Neurooncol Adv ; 2(1): vdaa048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642701

RESUMO

BACKGROUND: The current biomarkers alpha-fetoprotein (AFP) and human chorionic gonadotropin (HCG) have limited sensitivity/specificity for diagnosing malignant germ cell tumors (GCTs) and "marker-negative" patients require histological confirmation for diagnosis. However, GCTs at intracranial sites are surgically relatively inaccessible and biopsy carries risks. MicroRNAs from the miR-371~373 and miR-302/367 clusters are over-expressed in all malignant GCTs and, in particular, miR-371a-3p shows elevated serum levels at diagnosis for testicular disease. METHODS: Using our robust preamplified qRT-PCR methodology, we quantified miR-371a-3p levels in serum and cerebrospinal fluid (CSF) in a series of 4 representative clinical cases, 3 with intracranial malignant GCT and 1 with Langerhans cell histiocytosis (LCH), compared with appropriate control cases. RESULTS: Serum and/or CSF miR-371a-3p levels distinguished those with intracranial malignant GCTs from LCH and, if known in real time, could have helped clinical management. The benefits would have included (1) the only confirmatory evidence of an intracranial malignant GCT in 1 case, supporting clinical decision making; (2) early detection of intracranial malignant GCT in another, where an elevated CSF miR-371a-3p level preceded the histologically confirmed diagnosis by 2 years; and (3) confirmation of an intracranial malignant GCT relapse with an elevated serum miR-371a-3p level, where serum and CSF AFP and HCG levels were below thresholds for such a diagnosis. CONCLUSIONS: This series highlights the potential for microRNA quantification to assist the noninvasive diagnosis, prognostication, and management for patients with intracranial malignant GCTs. Serum and CSF should be collected routinely as part of future studies to facilitate the extension of these findings to larger patient cohorts.

13.
Paediatr Anaesth ; 30(4): 480-489, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31997512

RESUMO

BACKGROUND: Awake craniotomy with direct cortical stimulation and mapping is the gold standard for resection of lesions near eloquent brain areas, as it can maximize the extent of resection while minimizing the risk of neurological damage. In contrast to the adult population, only small series of awake craniotomies have been reported in children. AIMS: The aim of our study is to establish the feasibility of awake craniotomy in the pediatric population. METHODS: We performed a retrospective observational study of children undergoing a supratentorial awake craniotomy between January 2009 and April 2019 in a pediatric tertiary care center. Our primary outcome was feasibility of awake craniotomy, defined as the ability to complete the procedure without conversion to general anesthesia. Our secondary outcomes were the incidence of serious intraoperative complications and the mapping completion rate. RESULTS: Thirty procedures were performed in 28 children: 12 females and 16 males. The median age was 14 years (range 7-17). The primary diagnosis was tumor (83.3%), epilepsy (13.3%), and arterio-venous malformation (3.3%). The anesthetic techniques were asleep-awake-asleep (96.7%) and conscious sedation (3.3%), all cases supplemented with scalp block and pin-site infiltration. Awake craniotomy was feasible in 29 cases (96.7%), one patient converted to general anesthesia due to agitation. Serious complications occurred in six patients: agitation (6.7%), seizures (3.3%), increased intracranial pressure (3.3%), respiratory depression (3.3%), and bradycardia (3.3%). All complications were quickly resolved and without major consequences. Cortical mapping was completed in 96.6% cases. New neurological deficits occurred in six patients (20%)-moderate in one case and mild in 5-being all absent at 6 months of follow-up. CONCLUSION: Awake craniotomy with intraoperative mapping can be successfully performed in children. Adequate patient selection and close cooperation between neurosurgeons, anesthesiologists, neuropsychologists, and neurophysiologists is paramount. Further studies are needed to determine the best anesthetic technique in this population group.


Assuntos
Mapeamento Encefálico/métodos , Craniotomia/métodos , Complicações Intraoperatórias/prevenção & controle , Monitorização Intraoperatória/métodos , Vigília , Adolescente , Criança , Estudos de Viabilidade , Feminino , Humanos , Masculino , Estudos Retrospectivos
14.
J Cereb Blood Flow Metab ; 40(1): 67-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226401

RESUMO

Metabolic dysfunction is a key pathophysiological process in the acute phase of traumatic brain injury (TBI). Although changes in brain glucose metabolism and extracellular lactate/pyruvate ratio are well known, it was hitherto unknown whether these translate to downstream changes in ATP metabolism and intracellular pH. We have performed the first clinical voxel-based in vivo phosphorus magnetic resonance spectroscopy (31P MRS) in 13 acute-phase major TBI patients versus 10 healthy controls (HCs), at 3T, focusing on eight central 2.5 × 2.5 × 2.5 cm3 voxels per subject. PCr/γATP ratio (a measure of energy status) in TBI patients was significantly higher (median = 1.09) than that of HCs (median = 0.93) (p < 0.0001), due to changes in both PCr and ATP. There was no significant difference in PCr/γATP between TBI patients with favourable and unfavourable outcome. Cerebral intracellular pH of TBI patients was significantly higher (median = 7.04) than that of HCs (median = 7.00) (p = 0.04). Alkalosis was limited to patients with unfavourable outcome (median = 7.07) (p < 0.0001). These changes persisted after excluding voxels with > 5% radiologically visible injury. This is the first clinical demonstration of brain alkalosis and elevated PCr/γATP ratio acutely after major TBI. 31P MRS has potential for non-invasively assessing brain injury in the absence of structural injury, predicting outcome and monitoring therapy response.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Imageamento por Ressonância Magnética/métodos , Fósforo , Trifosfato de Adenosina/metabolismo , Adulto , Alcalose/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Estudos de Casos e Controles , Metabolismo Energético , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
15.
Pediatr Res ; 86(5): 675, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31462764

RESUMO

A correction to this paper has been published and can be accessed via a link at the top of the paper.

16.
Pediatr Res ; 86(5): 641-645, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31349360

RESUMO

BACKGROUND: Severe traumatic brain injury (TBI) is a leading cause of mortality in children, but the accurate prediction of outcomes at the point of admission remains very challenging. Admission laboratory results are a promising potential source of prognostic data, but have not been widely explored in paediatric cohorts. Herein, we use machine-learning methods to analyse 14 different serum parameters together and develop a prognostic model to predict 6-month outcomes in children with severe TBI. METHODS: A retrospective review of patients admitted to Cambridge University Hospital's Paediatric Intensive Care Unit between 2009 and 2013 with a TBI. The data for 14 admission serum parameters were recorded. Logistic regression and a support vector machine (SVM) were trained with these data against dichotimised outcomes from the recorded 6-month Glasgow Outcome Scale. RESULTS: Ninety-four patients were identified. Admission levels of lactate, H+, and glucose were identified as being the most informative of 6-month outcomes. Four different models were produced. The SVM using just the three most informative parameters was the best able to predict favourable outcomes at 6 months (sensitivity = 80%, specificity = 99%). CONCLUSIONS: Our results demonstrate the potential for highly accurate outcome prediction after severe paediatric TBI using admission laboratory data.


Assuntos
Lesões Encefálicas/terapia , Aprendizado de Máquina , Admissão do Paciente , Criança , Feminino , Humanos , Masculino , Resultado do Tratamento
17.
Epilepsia ; 59(10): 1982-1996, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203507

RESUMO

OBJECTIVE: Polymicrogyria (PMG) is a common malformation of cortical development. Many patients with PMG will have medically refractory epilepsy but the role of epilepsy surgery is unclear. The objective of this study was to assess the efficacy of surgical resection/disconnection in achieving seizure control in pediatric patients with PMG. METHODS: A retrospective review of children undergoing epilepsy surgery for PMG between 2002 and 2017 at The Hospital for Sick Children in Toronto, Canada, was performed. RESULTS: A total of 12 children aged 6 months to 17.8 years (median 8.8 years) underwent resective surgery (7 children) or functional hemispherectomy (5 children). Gross total resection or complete disconnection of PMG was carried out in 7 of 12 children. Follow-up duration was between 1 and 9 years (median 2.1 years). Nine children remained seizure-free at last follow-up. Complete resection or disconnection of PMG led to seizure freedom in 6 of 7 patients (86%), whereas subtotal resection produced seizure freedom in 3 of 5 patients (60%). SIGNIFICANCE: We present one of the largest surgical series of pediatric PMG patients. Seizure outcomes were best with complete resection/disconnection of PMG. However, tailored resections based on electroclinical and neuroradiologic data can produce good outcomes and remain an appropriate strategy for patients with extensive PMG.


Assuntos
Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/cirurgia , Polimicrogiria/complicações , Polimicrogiria/cirurgia , Resultado do Tratamento , Adolescente , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Polimicrogiria/diagnóstico por imagem , Estudos Retrospectivos
18.
Sci Rep ; 8(1): 11140, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042490

RESUMO

A key pathophysiological process and therapeutic target in the critical early post-injury period of traumatic brain injury (TBI) is cell mitochondrial dysfunction; characterised by elevation of brain lactate/pyruvate (L/P) ratio in the absence of hypoxia. We previously showed that succinate can improve brain extracellular chemistry in acute TBI, but it was not clear if this translates to a change in downstream energy metabolism. We studied the effect of microdialysis-delivered succinate on brain energy state (phosphocreatine/ATP ratio (PCr/ATP)) with 31P MRS at 3T, and tissue NADH/NAD+ redox state using microdialysis (L/P ratio) in eight patients with acute major TBI (mean 7 days). Succinate perfusion was associated with increased extracellular pyruvate (+26%, p < 0.0001) and decreased L/P ratio (-13%, p < 0.0001) in patients overall (baseline-vs-supplementation over time), but no clear-cut change in 31P MRS PCr/ATP existed in our cohort (p > 0.4, supplemented-voxel-vs-contralateral voxel). However, the percentage decrease in L/P ratio for each patient following succinate perfusion correlated significantly with their percentage increase in PCr/ATP ratio (Spearman's rank correlation, r = -0.86, p = 0.024). Our findings support the interpretation that L/P ratio is linked to brain energy state, and that succinate may support brain energy metabolism in select TBI patients suffering from mitochondrial dysfunction.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Metabolismo Energético/efeitos dos fármacos , NAD/metabolismo , Fosfatos/metabolismo , Ácido Succínico/farmacologia , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Encéfalo/metabolismo , Química Encefálica/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Microdiálise/métodos , Pessoa de Meia-Idade , Oxirredução , Perfusão , Fosfocreatina/metabolismo , Projetos Piloto , Estudos Prospectivos , Ácido Pirúvico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Ácido Succínico/administração & dosagem , Ácido Succínico/metabolismo , Resultado do Tratamento , Adulto Jovem
19.
J Neurotrauma ; 35(17): 2025-2035, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29690859

RESUMO

Metabolic abnormalities occur after traumatic brain injury (TBI). Glucose is conventionally regarded as the major energy substrate, although lactate can also be an energy source. We compared 3-13C lactate metabolism in TBI with "normal" control brain and muscle, measuring 13C-glutamine enrichment to assess tricarboxylic acid (TCA) cycle metabolism. Microdialysis catheters in brains of nine patients with severe TBI, five non-TBI brain surgical patients, and five resting muscle (non-TBI) patients were perfused (24 h in brain, 8 h in muscle) with 8 mmol/L sodium 3-13C lactate. Microdialysate analysis employed ISCUS and nuclear magnetic resonance. In TBI, with 3-13C lactate perfusion, microdialysate glucose concentration increased nonsignificantly (mean +11.9%, p = 0.463), with significant increases (p = 0.028) for lactate (+174%), pyruvate (+35.8%), and lactate/pyruvate ratio (+101.8%). Microdialysate 13C-glutamine fractional enrichments (median, interquartile range) were: for C4 5.1 (0-11.1) % in TBI and 5.7 (4.6-6.8) % in control brain, for C3 0 (0-5.0) % in TBI and 0 (0-0) % in control brain, and for C2 2.9 (0-5.7) % in TBI and 1.8 (0-3.4) % in control brain. 13C-enrichments were not statistically different between TBI and control brain, showing both metabolize 3-13C lactate via TCA cycle, in contrast to muscle. Several patients with TBI exhibited 13C-glutamine enrichment above the non-TBI control range, suggesting lactate oxidative metabolism as a TBI "emergency option."


Assuntos
Química Encefálica , Lesões Encefálicas Traumáticas/metabolismo , Ácido Láctico/metabolismo , Adolescente , Adulto , Ciclo do Ácido Cítrico , Diálise , Feminino , Glutamina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxirredução , Adulto Jovem
20.
Br J Neurosurg ; 31(5): 624-625, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27340736

RESUMO

Depressed skull fractures sustained from golf balls are quite rare. We report such a case in a 16-year old, and demonstrate its appearance in a 3D CT reconstruction.


Assuntos
Golfe/lesões , Fratura do Crânio com Afundamento/cirurgia , Criança , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Fratura do Crânio com Afundamento/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...