Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004675

RESUMO

Acute myeloid leukemia is characterized by uncontrolled proliferation of self-renewing myeloid progenitors accompanied by a differentiation arrest. PHF6 is a chromatin-binding protein mutated in myeloid leukemias, and its isolated loss increases mouse HSC self-renewal without malignant transformation. We report here that Phf6 knockout increases the aggressiveness of Hoxa9-driven AML over serial transplantation, and increases the frequency of leukemia initiating cells. We define the in vivo hierarchy of Hoxa9-driven AML and identify a population that we term the "LIC-e" (leukemia initiating cells enriched) population. We find that Phf6 loss expands the LIC-e population and skews its transcriptome to a more stem-like state; concordant transcriptome shifts are also observed on PHF6 knockout in a human AML cell line and in PHF6 mutant patient samples from the BEAT AML dataset. We demonstrate that LIC-e accumulation in Phf6 knockout AML occurs not due to effects on cell cycle or apoptosis, but due to an increase in the fraction of its progeny that retain LIC-e identity. Our work indicates that Phf6 loss increases AML self-renewal through context-specific effects on leukemia stem cells.

2.
bioRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38260439

RESUMO

Acute myeloid leukemia is characterized by uncontrolled proliferation of self-renewing myeloid progenitors. PHF6 is a chromatin-binding protein mutated in myeloid leukemias, and its loss increases mouse HSC self-renewal without malignant transformation. We report here that Phf6 knockout increases the aggressiveness of Hoxa9-driven AML over serial transplantation, and increases the frequency of leukemia initiating cells. We define the in vivo hierarchy of Hoxa9-driven AML and identify a population that we term the 'LIC-e' (leukemia initiating cells enriched) population. We find that Phf6 loss has context-specific transcriptional effects, skewing the LIC-e transcriptome to a more stem-like state. We demonstrate that LIC-e accumulation in Phf6 knockout AML occurs not due to effects on cell cycle or apoptosis, but due to an increase in the fraction of its progeny that retain LIC-e identity. Overall, our work indicates that Phf6 loss increases AML self-renewal through context-specific effects on leukemia stem cells.

3.
Stem Cells ; 37(1): 128-138, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30290030

RESUMO

Patients with leukemia, lymphoma, severe aplastic anemia, etc. are frequently the targets of bone marrow transplantation, the success of which critically depends on efficient engraftment by transplanted hematopoietic cells (HSCs). Ex vivo manipulation of HSCs to improve their engraftment ability becomes necessary when the number or quality of donor HSCs is a limiting factor. Due to their hematopoiesis-supportive ability, bone marrow-derived mesenchymal stromal cells (MSCs) have been traditionally used as feeder layers for ex vivo expansion of HSCs. MSCs form a special HSC-niche in vivo, implying that signaling mechanisms operative in them would affect HSC fate. We have recently demonstrated that AKT signaling prevailing in the MSCs affect the HSC functionality. Here we show that MSCs primed with nitric oxide donor, Sodium nitroprusside (SNP), significantly boost the engraftment potential of the HSCs co-cultured with them via intercellular transfer of microvesicles (MVs) harboring mRNAs encoding HSC-supportive genes. Our data suggest that these MVs could be used as HSC-priming agents to improve transplantation efficacy. Since both, nitric oxide donors and MSCs are already in clinical use; their application in clinical settings may be relatively straight forward. This approach could also be applied in regenerative medicine protocols. Stem Cells 2019;37:128-138.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Mesenquimais/metabolismo , Óxido Nítrico/metabolismo , Condicionamento Pré-Transplante/métodos , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos
4.
Stem Cells ; 36(3): 420-433, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29230885

RESUMO

Donor age is one of the major concerns in bone marrow transplantation, as the aged hematopoietic stem cells (HSCs) fail to engraft efficiently. Here, using murine system, we show that a brief interaction of aged HSCs with young mesenchymal stromal cells (MSCs) rejuvenates them and restores their functionality via inter-cellular transfer of microvesicles (MVs) containing autophagy-related mRNAs. Importantly, we show that MSCs gain activated AKT signaling as a function of aging. Activated AKT reduces the levels of autophagy-related mRNAs in their MVs, and partitions miR-17 and miR-34a into their exosomes, which upon transfer into HSCs downregulate their autophagy-inducing mRNAs. Our data identify previously unknown mechanisms operative in the niche-mediated aging of HSCs. Inhibition of AKT in aged MSCs increases the levels of autophagy-related mRNAs in their MVs and reduces the levels of miR-17 and miR-34a in their exosomes. Interestingly, transplantation experiments showed that the rejuvenating power of these "rescued" MVs is even better than that of the young MVs. We demonstrate that such ex vivo rejuvenation of aged HSCs could expand donor cohort and improve transplantation efficacy. Stem Cells 2018;36:420-433.


Assuntos
Envelhecimento/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Micropartículas Derivadas de Células/metabolismo , Exossomos/genética , Exossomos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Stem Cell Res Ther ; 7(1): 171, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27876094

RESUMO

BACKGROUND: The success of hematopoietic stem cell (HSC) transplantation is dependent on the quality of the donor HSCs. Some sources of HSCs display reduced engraftment efficiency either because of inadequate number (e.g., fetal liver and cord blood), or age-related dysfunction (e.g. in older individuals). Therefore, use of pharmacological compounds to improve functionality of HSCs is a forefront research area in hematology. METHODS: Lineage negative (Lin-) cells isolated from murine bone marrow or sort-purified Lin-Sca-1+c-Kit+CD34- (LSK-CD34-) were treated with a nitric oxide donor, sodium nitroprusside (SNP). The cells were subjected to various phenotypic and functional assays. RESULTS: We found that SNP treatment of Lin- cells leads to an increase in the numbers of LSK-CD34+ cells in them. Using sort-purified LSK CD34- HSCs, we show that this is related to acquisition of CD34 expression by LSK-CD34- cells, rather than proliferation of LSK-CD34+ cells. Most importantly, this upregulated expression of CD34 had age-dependent contrasting effects on HSC functionality. Increased CD34 expression significantly improved the engraftment of juvenile HSCs (6-8 weeks); in sharp contrast, it reduced the engraftment of adult HSCs (10-12 weeks). The molecular mechanism behind this phenomenon involved nitric oxide (NO)-mediated differential induction of various transcription factors involved in commitment with regard to self-renewal in adult and juvenile HSCs, respectively. Preliminary experiments performed on cord blood-derived and mobilized peripheral blood-derived cells revealed that NO exerts age-dependent contrasting effects on human HSCs as well. CONCLUSIONS: This study demonstrates novel age-dependent contrasting effects of NO on HSC functionality and suggests that HSC age may be an important parameter in screening of various compounds for their use in manipulation of HSCs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Óxido Nítrico/metabolismo , Animais , Antígenos CD34/metabolismo , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
Stem Cells ; 34(9): 2354-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27300259

RESUMO

The AKT pathway plays an important role in various aspects of stem cell biology. However, the consequences of constitutive activation of AKT in mesenchymal stromal cells (MSCs) on the fate of hematopoietic stem cells (HSCs) were unknown. Here, we show that bone marrow-derived MSCs expressing a constitutively active AKT1 expand HSCs, but severely affect their functionality. Conversely, stromal cells with silenced AKT1 limit HSC proliferation, but boost their functionality. These effects were related to differential modulation of several important regulatory genes, in both, the cocultured HSCs and in the stromal cells themselves. The detrimental effect of stromal cells with constitutively activated AKT1 involved dynamin-dependent endocytosis, whereas the salutary effect of stromal cells devoid of AKT1 was mediated via GAP junctions. Constitutive activation of AKT1 led to deregulated formation of GAP junctions in the stromal cells, which consequently exhibited strikingly increased intercellular transfer of molecular cargo to the HSCs. Conversely, stromal cells with silenced AKT1 exhibited normal intercellular arrangement of GAP junctions at appositional membrane areas, and did not show aberrant intercellular transfer. Micro-vesicles isolated from conditioned media of the stromal cells not only mimicked the effect of these cells, but also showed stronger effects. This is perhaps the first report demonstrating that AKT1 signaling prevailing in the MSCs regulates HSC functionality through various intercellular communication mechanisms. These findings could have important implications in the use of MSCs in regenerative medicine. Stem Cells 2016;34:2354-2367.


Assuntos
Comunicação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Caderinas/metabolismo , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Ativação Enzimática , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fenótipo , Estabilidade Proteica , RNA Interferente Pequeno/metabolismo , Receptores CXCR4/metabolismo , Transcriptoma/genética
7.
Stem Cells Dev ; 24(20): 2423-36, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26107807

RESUMO

The bone marrow (BM) microenvironment or the hematopoietic stem cell (HSC) niche is normally hypoxic, which maintains HSC quiescence. Paradoxically, transplanted HSCs rapidly proliferate in this niche. Pretransplant myelosuppression results in a substantial rise in oxygen levels in the marrow microenvironment due to reduced cellularity and consequent low oxygen consumption. Therefore, it may be construed that the rapid proliferation of the engrafted HSCs in the BM niche is facilitated by the transiently elevated oxygen tension in this milieu during the "engraftment window." To determine whether oxygen tension dominantly affects the regeneration of hematopoiesis in the BM niche, we created an "oxygen-independent hypoxic niche" by treating BM-derived mesenchymal stromal cells (BMSCs) with a hypoxia-mimetic compound, cobalt chloride (CoCl2) and cocultured them with BM-derived HSC-enriched cells under normoxic conditions (HSCs; CoCl2-cocultures). Cocultures with untreated BMSCs incubated under normoxia (control- cocultures) or hypoxia (1% O2; hypoxic-cocultures) were used as comparators. Biochemical analyses showed that though, both CoCl2 and hypoxia evoked comparable signals in the BMSCs, the regeneration of hematopoiesis in their respective cocultures was radically different. The CoCl2-BMSCs supported robust hematopoiesis, while the hypoxic-BMSCs exerted strong inhibition. The hematopoiesis-supportive ability of CoCl2-BMSCs was abrogated if the CoCl2-cocultures were incubated under hypoxia, demonstrating that the prevalent oxygen tension in the milieu dominantly affects the outcome of the HSC-BM niche interactions. Our data suggest that pharmacologically delaying the reestablishment of hypoxia in the BM may boost post-transplant regeneration of hematopoiesis.


Assuntos
Células da Medula Óssea/citologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Hiperemia/metabolismo , Oxigênio/metabolismo , Nicho de Células-Tronco/fisiologia , Animais , Medula Óssea/metabolismo , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...