Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 40(1): 29-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903984

RESUMO

In this work, α-costic acid (αCA), a plant sesquiterpenoid from Dittrichia viscosa, was grafted into polyaluminum chloride (PAC), forming a new eco-sustainable composite coagulant PAC-αCA with improved functionality. The α-costic acid fraction grafted into the PAC and the distribution of aluminum forms in the composite coagulant were evaluated for their effectiveness in removing bentonite and humic acid from synthetic water. The interaction mechanism between PAC and α-CA was examined by the Al-Ferron time spectrophotometric method, density functional theory (DFT), and FTIR analysis. By monitoring the aluminum speciation in the composite coagulant PAC-αCA, it was discovered that the introduction of α-CA impacted the distribution of various aluminum forms, including mononuclear Ala, highly polymeric Alb, colloidal, and medium polymeric Alc. The theoretical analysis identified the Alb species as particularly sensitive to reacting with α-CA. Furthermore, coagulation performance tests demonstrated that increasing the percentage of α-CA and promoting the prevalence of Alb and Alc species over Ala species in PAC-αCA led to improved removal of turbidity and UV254. This study provides an attractive and practical option for water treatment plants to remove colloidal suspensions in raw water effectively.

2.
J Pharm Biomed Anal ; 227: 115278, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739720

RESUMO

Essential oils (EOs) are natural products formed by plant volatile compounds. EOs are frequently used in the cosmetic and food industries as well as for domestic purposes, because of their physiochemical, biological and sensory properties. The functional groups (FG), corresponding to various chemical structures present in EOs, are responsible for their biological activities. Therefore, simple, rapid, and economical techniques suitable to characterize the EOs features by measuring their contents, are of great interest. Near-infrared spectroscopy (NIRS) highlights because of its rapidity, and being no-contaminant, as a potential solution. Multivariate correlation methods are commonly used to build NIRS calibrations. These methods were designed for the real space, that is for values comprised between - ∞ and + ∞. However, EOs components are co-dependent data restricted to a simplex space. These are the so-called compositional data (CoDa), needing specific methods to be correlated with a set of spectral explicative variables. In this study, compositional visible and near-infrared (VISNIRS) models have been assessed to quantify the FG of the analyzed EOs. For this purpose, the FG were organized according to their greater frequency in 1) alcohol; 2) ether; 3) ester; 4) aldehydes; 5) ketones, and the hydrocarbon fraction representing the remainder EOs mass, to characterize them. The approach of this study, based on compositional models from VISNIRS spectra, has provided a satisfactory predictive performance for the quantitative estimation of the main FG of the EOs. The proposed approach can be an alternative to traditional chemical methods to characterize EOs.


Assuntos
Óleos Voláteis , Óleos Voláteis/química , Espectroscopia de Luz Próxima ao Infravermelho , Plantas
3.
Nat Prod Res ; : 1-9, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226769

RESUMO

Eugenol, a plant bioactive component, is frequently found in a variety of medicinal plants with well-defined functional attributes. Essential oils containing eugenol were extracted from buds of Eugenia caryophyllata commonly named clove using hydrodistillation. Afterwards, the analysis of the essential oils using gas chromatography/mass spectrometry (GC/MS) shows that eugenol is the major constituent with 70.14% of it. The alkene group in eugenol was epoxidised using m-chloroperbenzoic acid leading to the synthesis of epoxide eugenol. The epoxide ring was cleaved to vanillyl glycol by mixed the epoxide eugenol with aluminum chloride hydrate in an ethanolic medium. A Density Functional Theory (DFT) study was investigated to understand the reactivity of the epoxide eugenol with the aluminum chloride hydrate. The results obtained from DFT based reactivity descriptors were in good agreement with the experiment results.

4.
BMC Complement Altern Med ; 16(1): 377, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27681382

RESUMO

BACKGROUND: Allium sativum L. (A.S.) "garlic", one of the most interesting medicinal plants, has been suggested to contain compounds that could be beneficial in numerous pathological situations including cancer. In this work, we aimed to assess the immunomodulatory effect of A.S. preparation on human peripheral blood mononuclear cells from healthy individuals. METHODS: Nontoxic doses of A.S. were identified using MTT assay. Effects on CD4+ or CD8+ T lymphocyte proliferation were studied using flow cytometry. The effect of A.S. on cytokine gene expression was studied using qRT-PCR. Finally, qualitative analysis of A.S. was performed by HPLC approach. Data were analyzed statistically by one-way ANOVA test. RESULTS: The nontoxic doses of A.S. preparation did not affect neither spontaneous nor TCR-mediated CD4+ or CD8+ T lymphocyte proliferation. Interestingly, A.S. exhibited a statistically significant regulation of IL-17 gene expression, a cytokine involved in several inflammatory and autoimmune diseases. In contrast, the expression of IL-4, an anti-inflammatory cytokine, was unaffected. Qualitative analysis of A.S. ethanol preparation indicated the presence of three polyphenol bioactive compounds, which are catechin, vanillic acid and ferulic acid. CONCLUSION: The specific inhibition of the pro-inflammatory cytokine, IL-17 without affecting cell proliferation in human PBMCs by the Allium sativum L. preparation suggests a potential valuable effect of the compounds present in this plant for the treatment of inflammatory diseases and cancer, where IL-17 is highly expressed. The individual contribution of these three compounds to this global effect will be assessed.

5.
BMC Immunol ; 17(1): 26, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27483999

RESUMO

BACKGROUND: Capparis Spinosa L. is an aromatic plant growing wild in dry regions around the Mediterranean basin. Capparis Spinosa was shown to possess several properties such as antioxidant, antifungal, and anti-hepatotoxic actions. In this work, we aimed to evaluate immunomodulatory properties of Capparis Spinosa leaf extracts in vitro on human peripheral blood mononuclear cells (PBMCs) from healthy individuals. RESULTS: Using MTT assay, we identified a range of Capparis Spinosa doses, which were not toxic. Unexpectedly, we found out that Capparis Spinosa aqueous fraction exhibited an increase in cell metabolic activity, even though similar doses did not affect cell proliferation as shown by CFSE. Interestingly, Capparis Spinosa aqueous fraction appeared to induce an overall anti-inflammatory response through significant inhibition of IL-17 and induction of IL-4 gene expression when PBMCs were treated with the non toxic doses of 100 and/or 500 µg/ml. Phytoscreening analysis of the used Capparis Spinosa preparations showed that these contain tannins; sterols, alkaloids; polyphenols and flavonoids. Surprisingly, quantification assays showed that our Capparis Spinosa preparation contains low amounts of polyphenols relative to Capparis Spinosa used in other studies. This Capparis Spinosa also appeared to act as a weaker scavenging free radical agent as evidenced by DPPH radical scavenging test. Finally, polyphenolic compounds including catechin, caffeic acid, syringic acid, rutin and ferulic acid were identified by HPLC, in the Capparis spinosa preparation. CONCLUSION: Altogether, these findings suggest that our Capparis Spinosa preparation contains interesting compounds, which could be used to suppress IL-17 and to enhance IL-4 gene expression in certain inflammatory situations. Other studies are underway in order to identify the compound(s) underlying this effect.


Assuntos
Anti-Inflamatórios/farmacologia , Capparis/imunologia , Fatores Imunológicos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Extratos Vegetais/farmacologia , Compostos de Bifenilo/metabolismo , Ácidos Cafeicos/metabolismo , Citocinas/metabolismo , Dimetil Sulfóxido/química , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxibenzoatos/química , Leucócitos Mononucleares/imunologia , Metanol/química , Marrocos , Picratos/metabolismo , Extratos Vegetais/química
6.
Chirality ; 27(12): 944-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431347

RESUMO

Catalytic asymmetric benzylation of a dissymmetric tert-butylglycinate ketimine, incorporating 1-naphthyl and phenyl groups as the Schiff base substituents, under phase-transfer conditions was investigated. It was interesting to note that the sense of asymmetric induction of the alkylation of Z-imine stereoisomer is opposite to that of the corresponding E stereoisomer with a similar degree of enantioselectivity. More interestingly, the chiral Cu(II) complex of the Schiff base derived from (R)-2-phenylglycinol and 2-hydroxy-1-naphthaldehyde was found to catalyze the same reaction under solid-liquid conditions with comparable enantioselectivity (up to 60% ee) with respect to known cinchona alkaloid catalysts. The solvent/base-system parameter was shown to control the optimal catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...