Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 24(6): 1110-1124, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242690

RESUMO

Shrimp farming is an important socioeconomic activity worldwide. Infectious myonecrosis virus (IMNV) is an important shrimp virus responsible for significant mortality (up to 70%) in Litopenaeus vannamei. We produced recombinant capsid protein (r-IMNV31) and obtained a highly specific antibody, anti-r-IMNV31, which was used in WOAH-approved ELISA and Western blot to detect IMNV. Further, anti-r-IMNV31 was employed in an indigenously developed lateral flow immunoassay (LFA) with gold nanoparticles as a visual label. Using LFA, IMNV could be detected rapidly (20 min) from tissue homogenate with high specificity, reproducibility, and sensitivity (LOD = 103 viral particles). LFA was validated with "gold standard" qRT-PCR using 60 samples with high sensitivity (100%), specificity (86%). A Cohen's kappa coefficient of 0.86 suggested "good agreement" between LFA and qRT-PCR. With a shelf-life of ~ 1 year at ambient temperature, the use of LFA in the on-site detection of IMNV by shrimp farmers will be a reality.


Assuntos
Nanopartículas Metálicas , Penaeidae , Animais , Reprodutibilidade dos Testes , Ouro , Imunoensaio
2.
J Mol Model ; 26(10): 264, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914310

RESUMO

White spot disease caused by the white spot syndrome virus (WSSV) incurs a huge loss to the shrimp farming industry. Since no effective therapeutic measures are available, early detection and prevention of the disease are indispensable. Towards this goal, we previously identified a 12-mer phage displayed peptide (designated as pep28) with high affinity for VP28, the structural protein of the white spot syndrome virus (WSSV). The peptide pep28 was successfully used as a biorecognition probe in the lateral flow assay developed for rapid, on-site detection of WSSV. To unravel the structural determinants for the selective binding between VP28 and pep28, we used bioinformatics, structural modeling, protein-protein docking, and binding-free energy studies. We performed atomistic molecular dynamics simulations of pep28-pIII model totaling 300 ns timescale. The most representative pep28-pIII structure from the simulation was used for docking with the crystal structure of VP28. Our results reveal that pep28 binds in a surface groove of the monomeric VP28 ß-barrel and makes several hydrogen bonds and non-polar interactions. Ensemble-based binding-free energy studies reveal that the binding is dominated by non-polar interactions. Our studies provide molecular level insights into the binding mechanism of pep28 with VP28, which explain why the peptide is selective and can assist in modifying pep28 for its practical use, both as a biorecognition probe and a therapeutic.


Assuntos
Técnicas de Visualização da Superfície Celular , Mapeamento de Epitopos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Mapeamento de Interação de Proteínas , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Sítios de Ligação , Mapeamento de Epitopos/métodos , Ligação de Hidrogênio , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Multimerização Proteica , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...