Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(9): 1071-1077, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400590

RESUMO

Traditionally, the formation of amorphous shear bands in crystalline materials has been undesirable, because shear bands can nucleate voids and act as precursors to fracture. They also form as a final stage of accumulated damage. Only recently were shear bands found to form in undefected crystals, where they serve as the primary driver of plasticity without nucleating voids. Here we have discovered trends in materials properties that determine when amorphous shear bands will form and whether they will drive plasticity or lead to fracture. We have identified the materials systems that exhibit shear-band deformation, and by varying the composition, we were able to switch from ductile to brittle behaviour. Our findings are based on a combination of experimental characterization and atomistic simulations, and they provide a potential strategy for increasing the toughness of nominally brittle materials.

2.
Ultramicroscopy ; 241: 113612, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113221

RESUMO

Densely spaced four-dimensional scanning transmission electron microscopy (4D STEM) analyzed using correlation symmetry coefficients enables large area mapping of approximate rotational symmetries in amorphous materials. Here, we report the effects of Poisson noise, limited electron counts, probe coherence, reciprocal space sampling, and the probe-sample interaction volume on 4D STEM symmetry mapping experiments. These results lead to an experiment parameter envelope for high quality, high confidence 4D STEM symmetry mapping. We also establish a direct link between the symmetry coefficients and approximate rotational symmetries of nearest-neighbor atomic clusters using electron diffraction simulations from atomic models of a metallic glass. Experiments on a Pd77.5Cu6Si16.5 metallic glass thin film demonstrate the ability to image the types, sizes, volume fractions, and spatial correlations amongst local rotationally symmetry regions in the glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...