Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 99(25): 250505, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18233509

RESUMO

Shor's powerful quantum algorithm for factoring represents a major challenge in quantum computation. Here, we implement a compiled version in a photonic system. For the first time, we demonstrate the core processes, coherent control, and resultant entangled states required in a full-scale implementation. These are necessary steps on the path towards scalable quantum computing. Our results highlight that the algorithm performance is not the same as that of the underlying quantum circuit and stress the importance of developing techniques for characterizing quantum algorithms.

2.
Phys Rev Lett ; 93(8): 080502, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15447165

RESUMO

We demonstrate complete characterization of a two-qubit entangling process--a linear optics controlled-NOT gate operating with coincident detection--by quantum process tomography. We use a maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows an accurate prediction of the operation of the gate for arbitrary input states and a calculation of gate performance measures such as the average gate fidelity, average purity, and entangling capability of our gate, which are 0.90, 0.83, and 0.73, respectively.

3.
Nature ; 429(6993): 734-7, 2004 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15201903

RESUMO

Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.

4.
Opt Lett ; 28(18): 1630-2, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-13677518

RESUMO

We investigate a fundamental limitation on the measurement of spatial coherence for highly incoherent fields. We model the near-field detection scheme, required for such a measurement, with pointlike induced dipoles. We find that this fully vector model sets a characteristic length scale beyond which the spatial coherence of an optical field cannot be accurately measured. This length scale forms an uncertainty relationship with the photodetector integration time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA