Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(21): 8217-8229, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29615494

RESUMO

Ca2+-dependent secretory granule fusion with the plasma membrane is the final step for the exocytic release of inflammatory mediators, neuropeptides, and peptide hormones. Secretory cells use a similar protein machinery at late steps in the regulated secretory pathway, employing protein isoforms from the Rab, Sec1/Munc18, Munc13/CAPS, SNARE, and synaptotagmin protein families. However, no small-molecule inhibitors of secretory granule exocytosis that target these proteins are currently available but could have clinical utility. Here we utilized a high-throughput screen of a 25,000-compound library that identified 129 small-molecule inhibitors of Ca2+-triggered secretory granule exocytosis in RBL-2H3 mast cells. These inhibitors broadly fell into six different chemical classes, and follow-up permeable cell and liposome fusion assays identified the target for one class of these inhibitors. A family of 2-aminobenzothiazoles (termed benzothiazole exocytosis inhibitors or bexins) was found to inhibit mast cell secretory granule fusion by acting on a Ca2+-dependent, C2 domain-containing priming factor, Munc13-4. Our findings further indicated that bexins interfere with Munc13-4-membrane interactions and thereby inhibit Munc13-4-dependent membrane fusion. We conclude that bexins represent a class of specific secretory pathway inhibitors with potential as therapeutic agents.


Assuntos
Degranulação Celular/efeitos dos fármacos , Exocitose , Leucemia Basofílica Aguda/patologia , Mastócitos/patologia , Proteínas/metabolismo , Vesículas Secretórias/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Leucemia Basofílica Aguda/tratamento farmacológico , Leucemia Basofílica Aguda/metabolismo , Mastócitos/efeitos dos fármacos , Fusão de Membrana , Proteínas/genética , Ratos , Vesículas Secretórias/efeitos dos fármacos , Células Tumorais Cultivadas
2.
Mol Biol Cell ; 28(6): 792-808, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28100639

RESUMO

Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 µm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of ß-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells.


Assuntos
Proteínas/metabolismo , Proteínas/fisiologia , Animais , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Endossomos/metabolismo , Endossomos/fisiologia , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Transporte Proteico , Proteínas/genética , Ratos , Proteínas SNARE/metabolismo , Vesículas Secretórias/fisiologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Vacúolos/fisiologia
3.
Mol Biol Cell ; 27(4): 654-68, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26700319

RESUMO

The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Exocitose , Fusão de Membrana/fisiologia , Células Neuroendócrinas/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Células Neuroendócrinas/fisiologia , Células PC12 , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos
4.
Front Endocrinol (Lausanne) ; 4: 187, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24363652

RESUMO

CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.

5.
J Biol Chem ; 288(11): 7769-7780, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23341457

RESUMO

Membrane fusion for exocytosis is mediated by SNAREs, forming trans-ternary complexes to bridge vesicle and target membranes. There is an array of accessory proteins that directly interact with and regulate SNARE proteins. PRIP (phospholipase C-related but catalytically inactive protein) is likely one of these proteins; PRIP, consisting of multiple functional modules including pleckstrin homology and C2 domains, inhibited exocytosis, probably via the binding to membrane phosphoinositides through the pleckstrin homology domain. However, the roles of the C2 domain have not yet been investigated. In this study, we found that the C2 domain of PRIP directly interacts with syntaxin 1 and SNAP-25 but not with VAMP2. The C2 domain promoted PRIP to co-localize with syntaxin 1 and SNAP-25 in PC12 cells. The binding profile of the C2 domain to SNAP-25 was comparable with that of synaptotagmin I, and PRIP inhibited synaptotagmin I in binding to SNAP-25 and syntaxin 1. It was also shown that the C2 domain was required for PRIP to suppress SDS-resistant ternary SNARE complex formation and inhibit high K(+)-induced noradrenalin release from PC12 cells. These results suggest that PRIP inhibits regulated exocytosis through the interaction of its C2 domain with syntaxin 1 and SNAP-25, potentially competing with other SNARE-binding, C2 domain-containing accessory proteins such as synaptotagmin I and by directly inhibiting trans-SNARE complex formation.


Assuntos
Coativadores de Receptor Nuclear/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/química , Animais , Catálise , DNA/química , Exocitose , Lipossomos/química , Microscopia de Fluorescência/métodos , Norepinefrina/química , Coativadores de Receptor Nuclear/química , Células PC12 , Potássio/química , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas SNARE/química , Sinaptotagmina I/química
6.
J Cell Biol ; 197(2): 301-12, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22508512

RESUMO

Munc13-4 is a widely expressed member of the CAPS/Munc13 protein family proposed to function in priming secretory granules for exocytosis. Munc13-4 contains N- and C-terminal C2 domains (C2A and C2B) predicted to bind Ca(2+), but Ca(2+)-dependent regulation of Munc13-4 activity has not been described. The C2 domains bracket a predicted SNARE-binding domain, but whether Munc13-4 interacts with SNARE proteins is unknown. We report that Munc13-4 bound Ca(2+) and restored Ca(2+)-dependent granule exocytosis to permeable cells (platelets, mast, and neuroendocrine cells) dependent on putative Ca(2+)-binding residues in C2A and C2B. Munc13-4 exhibited Ca(2+)-stimulated SNARE interactions dependent on C2A and Ca(2+)-dependent membrane binding dependent on C2B. In an apparent coupling of membrane and SNARE binding, Munc13-4 stimulated SNARE-dependent liposome fusion dependent on putative Ca(2+)-binding residues in both C2A and C2B domains. Munc13-4 is the first priming factor shown to promote Ca(2+)-dependent SNARE complex formation and SNARE-mediated liposome fusion. These properties of Munc13-4 suggest its function as a Ca(2+) sensor at rate-limiting priming steps in granule exocytosis.


Assuntos
Cálcio/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Proteínas SNARE/metabolismo , Plaquetas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Exocitose/fisiologia , Humanos , Lipossomos/metabolismo , Mastócitos/metabolismo , Células Neuroendócrinas/metabolismo , Sinaptotagminas/metabolismo
7.
Cell Metab ; 14(2): 254-63, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21803295

RESUMO

Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Vesículas Citoplasmáticas/metabolismo , Exocitose , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Hormônios , Humanos , Lipossomos/metabolismo , Ligação Proteica , Ratos , Proteína 2 Associada à Membrana da Vesícula/metabolismo
8.
J Biol Chem ; 285(46): 35320-9, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20826818

RESUMO

CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca(2+)-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Fusão de Membrana , Proteolipídeos/metabolismo , Proteínas SNARE/metabolismo , Animais , Ligação Competitiva , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Células HEK293 , Humanos , Immunoblotting , Cinética , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Neurônios/metabolismo , Fosfatidilcolinas/química , Fosfatidilserinas/química , Ligação Proteica , Multimerização Proteica , Proteolipídeos/química , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas SNARE/química , Proteínas SNARE/genética , Spodoptera , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinteninas/química , Sinteninas/genética , Sinteninas/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
10.
Proc Natl Acad Sci U S A ; 106(41): 17308-13, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805029

RESUMO

Ca(2+)-dependent activator protein for secretion (CAPS) is an essential factor for regulated vesicle exocytosis that functions in priming reactions before Ca(2+)-triggered fusion of vesicles with the plasma membrane. However, the precise events that CAPS regulates to promote vesicle fusion are unclear. In the current work, we reconstituted CAPS function in a SNARE-dependent liposome fusion assay using VAMP2-containing donor and syntaxin-1/SNAP-25-containing acceptor liposomes. The CAPS stimulation of fusion required PI(4,5)P(2) in acceptor liposomes and was independent of Ca(2+), but Ca(2+) dependence was restored by inclusion of synaptotagmin. CAPS stimulated trans-SNARE complex formation concomitant with the stimulation of full membrane fusion at physiological SNARE densities. CAPS bound syntaxin-1, and CAPS truncations that competitively inhibited syntaxin-1 binding also inhibited CAPS-dependent fusion. The results revealed an unexpected activity of a priming protein to accelerate fusion by efficiently promoting trans-SNARE complex formation. CAPS may function in priming by organizing SNARE complexes on the plasma membrane.


Assuntos
Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Exocitose/fisiologia , Homeostase , Lecitinas/metabolismo , Lipossomos/metabolismo , Fusão de Membrana/fisiologia , Células PC12/fisiologia , Fosfatidilserinas/metabolismo , Ratos , Sinaptotagminas/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
11.
J Cell Biol ; 182(2): 355-66, 2008 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-18644890

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P(2)) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P(2) as approximately 6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P(2) soluble NSF attachment protein receptor (SNARE)-dependent liposome fusion is inhibited. Inhibition by PI 4,5-P(2) likely results from its intrinsic positive curvature-promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P(2), suggesting that syntaxin sequesters PI 4,5-P(2) to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P(2), we test a PI 4,5-P(2)-binding priming factor required for vesicle exocytosis. Ca(2+)-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P(2) dependent. These results indicate that PI 4,5-P(2) regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Lipossomos/metabolismo , Fusão de Membrana/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Células PC12 , Fosfatidilinositol 4,5-Difosfato/farmacologia , Ratos , Sintaxina 1/efeitos dos fármacos , Sintaxina 1/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/ultraestrutura
12.
Protein Expr Purif ; 58(2): 229-41, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18226920

RESUMO

A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of approximately 18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3mg per g of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed.


Assuntos
Citocromos b5/biossíntese , Lipossomos/metabolismo , Proteínas de Transporte/genética , Clonagem Molecular/métodos , Endopeptidases/metabolismo , Vetores Genéticos , Heme/metabolismo , Humanos , Proteínas Ligantes de Maltose , Proteínas Recombinantes de Fusão/biossíntese
13.
Biochim Biophys Acta ; 1693(2): 81-9, 2004 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-15313010

RESUMO

SNARE proteins play a central role in the process of intracellular membrane fusion. Indeed, the interaction of SNAREs present on two opposing membranes is generally believed to provide the driving force to initiate membrane fusion. Eukaryotic cells express a large number of SNARE isoforms, and the function of individual SNAREs is required for specific intracellular fusion events. Exocytosis, the fusion of secretory vesicles with the plasma membrane, employs the proteins syntaxin and SNAP-25 as plasma membrane SNAREs. As a result, exocytosis is dependent upon the targeting of these proteins to the plasma membrane; however, the mechanisms that underlie trafficking of exocytic syntaxin and SNAP-25 proteins to the cell surface are poorly understood. The intracellular trafficking itinerary of these proteins is particularly intriguing as syntaxins are tail-anchored (or Type IV) membrane proteins, whereas SNAP-25 is anchored to membranes via a central palmitoylated domain-there is no common consensus for the trafficking of such proteins within the cell. In this review, we discuss the plasma membrane targeting of these essential exocytic SNARE proteins.


Assuntos
Membrana Celular/metabolismo , Exocitose , Proteínas de Transporte Vesicular/metabolismo , Animais , Humanos , Proteínas de Membrana/metabolismo , Proteínas Munc18 , Proteínas do Tecido Nervoso/metabolismo , Proteínas Qa-SNARE , Proteínas SNARE , Proteína 25 Associada a Sinaptossoma
14.
Traffic ; 5(4): 255-64, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15030567

RESUMO

Exocytosis is the process whereby intracellular fluid-filled vesicles fuse with the plasma membrane, incorporating vesicle proteins and lipids into the plasma membrane and releasing vesicle contents into the extracellular milieu. Exocytosis can occur constitutively or can be tightly regulated, for example, neurotransmitter release from nerve endings. The last two decades have witnessed the identification of a vast array of proteins and protein complexes essential for exocytosis. SNARE proteins fill the spotlight as probable mediators of membrane fusion, whereas proteins such as munc18/nsec1, NSF and SNAPs function as essential SNARE regulators. A central question that remains unanswered is how exocytic proteins and protein complexes are spatially regulated. Recent studies suggest that lipid rafts, cholesterol and sphingolipid-rich microdomains, enriched in the plasma membrane, play an essential role in regulated exocytosis pathways. The association of SNAREs with lipid rafts acts to concentrate these proteins at defined sites of the plasma membrane. Furthermore, cholesterol depletion inhibits regulated exocytosis, suggesting that lipid raft domains play a key role in the regulation of exocytosis. This review examines the role of lipid rafts in regulated exocytosis, from a passive role as spatial coordinator of exocytic proteins to a direct role in the membrane fusion reaction.


Assuntos
Exocitose/fisiologia , Microdomínios da Membrana/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Colesterol/fisiologia , Humanos , Modelos Biológicos , Conformação Proteica , Proteínas/fisiologia , Proteínas SNARE , Vírus/metabolismo
15.
J Biol Chem ; 279(20): 20567-70, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15024008

RESUMO

Insulin stimulates the movement of the facilitative glucose transporter glucose transporter-4 (Glut4) from an intracellular compartment to the plasma membrane in adipocytes and muscle cells, resulting in an increased rate of glucose uptake. Insulin-stimulated Glut4 translocation and glucose transport are abolished by wortmannin, a specific inhibitor of phosphatidylinositol 3'-kinase (PI3K). Here, we demonstrate that neomycin, a drug that masks the cellular substrate of PI3K, phosphatidylinositol 4,5-bisphosphate (PIP), prevents wortmannin inhibition of insulin-stimulated (2)Glut4 translocation and glucose transport without activating protein kinase B, a downstream effector of PI3K. These results suggest that PIP(2) may have an important regulatory function in insulin-stimulated Glut4 translocation and glucose transport.


Assuntos
Adipócitos/metabolismo , Androstadienos/farmacologia , Insulina/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Neomicina/farmacologia , Células 3T3 , Adipócitos/efeitos dos fármacos , Androstadienos/antagonistas & inibidores , Animais , Transportador de Glucose Tipo 4 , Secreção de Insulina , Camundongos , Transporte Proteico/efeitos dos fármacos , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...