Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36836174

RESUMO

The intravenous induction or loading dose in children is commonly prescribed per kilogram. That dose recognizes the linear relationship between volume of distribution and total body weight. Total body weight comprises both fat and fat-free mass. Fat mass influences the volume of distribution and the use of total body weight fails to recognize the impact of fat mass on pharmacokinetics in children. Size metrics alternative to total body mass (e.g., fat-free and normal fat mass, ideal body weight and lean body weight) have been proposed to scale pharmacokinetic parameters (clearance, volume of distribution) for size. Clearance is the key parameter used to calculate infusion rates or maintenance dosing at steady state. Dosing schedules recognize the curvilinear relationship, described using allometric theory, between clearance and size. Fat mass also has an indirect influence on clearance through both metabolic and renal function that is independent of its effects due to increased body mass. Fat-free mass, lean body mass and ideal body mass are not drug specific and fail to recognize the variable impact of fat mass contributing to body composition in children, both lean and obese. Normal fat mass, used in conjunction with allometry, may prove a useful size metric but computation by clinicians for the individual child is not facile. Dosing is further complicated by the need for multicompartment models to describe intravenous drug pharmacokinetics and the concentration effect relationship, both beneficial and adverse, is often poorly understood. Obesity is also associated with other morbidity that may also influence pharmacokinetics. Dose is best determined using pharmacokinetic-pharmacodynamic (PKPD) models that account for these varied factors. These models, along with covariates (age, weight, body composition), can be incorporated into programmable target-controlled infusion pumps. The use of target-controlled infusion pumps, assuming practitioners have a sound understanding of the PKPD within programs, provide the best available guide to intravenous dose in obese children.

2.
BJU Int ; 129(3): 325-336, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34214236

RESUMO

OBJECTIVES: To assess the feasibility and uptake of a community-based prostate cancer (PCa) screening programme selecting men according to their genetic risk of PCa. To assess the uptake of PCa screening investigations by men invited for screening. The uptake of the pilot study would guide the opening of the larger BARCODE1 study recruiting 5000 men. SUBJECTS AND METHODS: Healthy males aged 55-69 years were invited to participate via their general practitioners (GPs). Saliva samples were collected via mailed collection kits. After DNA extraction, genotyping was conducted using a study specific assay. Genetic risk was based on genotyping 130 germline PCa risk single nucleotide polymorphisms (SNPs). A polygenic risk score (PRS) was calculated for each participant using the sum of weighted alleles for 130 SNPs. Study participants with a PRS lying above the 90th centile value were invited for PCa screening by prostate magnetic resonance imaging (MRI) and biopsy. RESULTS: Invitation letters were sent to 1434 men. The overall study uptake was 26% (375/1436) and 87% of responders were eligible for study entry. DNA genotyping data were available for 297 men and 25 were invited for screening. After exclusions due to medical comorbidity/invitations declined, 18 of 25 men (72%) underwent MRI and biopsy of the prostate. There were seven diagnoses of PCa (38.9%). All cancers were low-risk and were managed with active surveillance. CONCLUSION: The BARCODE1 Pilot has shown this community study in the UK to be feasible, with an overall uptake of 26%. The main BARCODE1 study is now open and will recruit 5000 men. The results of BARCODE1 will be important in defining the role of genetic profiling in targeted PCa population screening. Patient Summary What is the paper about? Very few prostate cancer screening programmes currently exist anywhere in the world. Our pilot study investigated if men in the UK would find it acceptable to have a genetic test based on a saliva sample to examine their risk of prostate cancer development. This test would guide whether men are offered prostate cancer screening tests. What does it mean for patients? We found that the study design was acceptable: 26% of men invited to take part agreed to have the test. The majority of men who were found to have an increased genetic risk of prostate cancer underwent further tests offered (prostate MRI scan and biopsy). We have now expanded the study to enrol 5000 men. The BARCODE1 study will be important in examining whether this approach could be used for large-scale population prostate cancer screening.


Assuntos
Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata , Detecção Precoce de Câncer/métodos , Estudos de Viabilidade , Células Germinativas/patologia , Humanos , Masculino , Projetos Piloto , Polimorfismo de Nucleotídeo Único/genética , Antígeno Prostático Específico/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...