Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Physiol ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004886

RESUMO

The purpose of this study was to examine the effects of 6 weeks of localized, muscle-focused (quadriceps femoris) passive heat therapy (PHT) on resistance artery function, exercise haemodynamics and exercise performance relative to knee extension (KE) exercise training (EX). We randomized 34 healthy adults (ages 18-36; n = 17 female, 17 male) to receive either PHT or sham heating sessions (120 min, 3 days/week), or EX (40 min, 3 days/week) over 6 weeks. Blood flow was assessed with Doppler ultrasound of the femoral artery during both passive leg movement (PLM) and a KE graded exercise test. Muscle biopsies were taken from the vastus lateralis at baseline and after 6 weeks. Peak blood flow during PLM increased to the same extent in both the EX (∼10.5% increase, P = 0.009) and PHT groups (∼8.5% increase, P = 0.044). Peak flow during knee extension exercise increased in EX (∼19%, P = 0.005), but did not change in PHT (P = 0.523) and decreased in SHAM (∼7%, P = 0.020). Peak vascular conductance during KE increased by ∼25% in EX (P = 0.030) and PHT (P = 0.012). KE peak power increased in EX by ∼27% (P = 0.001) but did not significantly change in PHT and SHAM groups. Expression of endothelial nitric oxide synthase increased significantly in both EX (P = 0.028) and PHT (P = 0.0095), but only EX resulted in increased angiogenesis. In conclusion, 6 weeks of localized PHT improved resistance artery function at rest and during exercise to the same extent as exercise training but did not yield significant improvements in performance. KEY POINTS: Many for whom exercise would be most beneficial are either unable to exercise or have a very low exercise tolerance. In these cases, an alternative treatment to combat declines in resistance artery function is needed. We tested the hypothesis that passive heat therapy (PHT) would increase resistance artery function, improve exercise haemodynamics and enhance exercise performance compared to a sham treatment, but less than aerobic exercise training. This report shows that 6 weeks of localized PHT improved resistance artery function at rest and during exercise to the same extent as exercise training but did not improve exercise performance. Additionally, muscle biopsy analyses revealed that endothelial nitric oxide synthase expression increased in both PHT and exercise training groups, but only exercise resulted in increased angiogenesis. Our data demonstrate the efficacy of applying passive heat as an alternative treatment to improve resistance artery function for those unable to receive the benefits of regular exercise.

2.
Med Sci Sports Exerc ; 56(8): 1390-1397, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595163

RESUMO

PURPOSE: To understand athletic performance before and after puberty, this study determined 1) the age at which the sex difference increases among elite youth track and field athletes for running and jumping events, and 2) whether there is a sex difference in performance before ages associated with puberty among elite youth athletes. METHODS: Track and field records of elite US male and female youth (7-18 yr) across 3 yr (2019, 2021, and 2022) were collected from an online database ( athletic.net ). The top 50 performances were recorded for 100-, 200-, 400-, and 800-m track running, long jump, and high jump. RESULTS: Males ran faster than females at every age in the 100, 200, 400 and 800 m ( P < 0.001). When combining all running events, the sex difference (%) was 4.0% ± 1.7% between 7 and 12 yr and increased to 6.3% ± 1.1% at 13 yr and 12.6% ± 1.8% at 18 yr ( P < 0.001). Similarly, males jumped higher and farther than females at every age ( P < 0.001). For long jump, the sex difference was 6.8% ± 2.8% between 7 and 12 yr, increasing to 8.5% ± 1.7% at 13 yr and 22.7% ± 1.4% at 18 yr ( P < 0.001). For high jump, the sex difference was 5.3% ± 5.2% between 7 and 12 yr, increasing to 12.4% ± 2.9% at 15 yr and 18.4% ± 2.04% at 18 yr ( P < 0.001). CONCLUSIONS: Before 12 yr of age in elite youth track and field athletes, there was a consistent and significant sex difference of ~5%, such that males ran faster and jumped higher and farther than females. The magnitude of the sex difference in performance increased markedly at 12-13 yr for running and long jump and 14 yr for high jump and thus was more pronounced after ages associated with puberty.


Assuntos
Desempenho Atlético , Corrida , Atletismo , Humanos , Adolescente , Masculino , Feminino , Desempenho Atlético/fisiologia , Criança , Atletismo/fisiologia , Corrida/fisiologia , Fatores Sexuais , Fatores Etários , Puberdade/fisiologia
4.
J Appl Physiol (1985) ; 135(4): 932-942, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650136

RESUMO

Historically, low representation of women participants in exercise science and physiology studies has led to a lack of understanding in the response of women to exercise and therapeutic interventions. We hypothesized that 1) the number of women authors, participants, and editorial board members increased over 30 years (1991-2021) and 2) larger representation of women as editors and authors is associated with more women participants. Gender (man/woman) of editorial board members (n = 394), authors (n = 5,735), and participants (n = 2,984,883) of 972 original research articles with human participants published in 1991 and 2021 was analyzed from three journals: Journal of Applied Physiology, Medicine and Science in Sports and Exercise, and British Journal of Sports Medicine. Between 1991 to 2021, the average percent women per article as participants (21.9 ± 31.7% vs. 36.3 ± 30.3%, respectively, P < 0.001), authors (16.4 ± 22.4% vs. 30.9 ± 24.0%, P < 0.001), and editorial board members (13.3 ± 5.4% vs. 41.5 ± 7.3%, P = 0.006) increased. In 2021, the gender proportion of participants in large datasets was similar (50.2 ± 20.2% women). However, studies with smaller datasets (i.e., <∼3,000 participants) included less women (35.6 ± 30.6%). Women participants (%) were less when the last author was a man rather than a woman in 1991 (19.9 ± 29.5% vs. 34.3 ± 42.2%) and 2021 (31.6 ± 27.7% vs. 51.7 ± 33.4%). In 2021, there was a positive correlation between author and participant gender (% women) (r = 0.42, P < 0.001). Our data suggest that the low representation of women in exercise science and physiology research could be resolved with equitable numbers of women authors and editors and by encouraging men authors to study both women and men participants.NEW & NOTEWORTHY Analysis of human applied physiology studies revealed that the representation of women authors, participants, and editorial board members increased over 30 years but remained lower than men in 2021. Larger representation of women editors and authors was associated with more women participants. Women authors assessed similar numbers of women and men participants, whereas men authors included less women. Equitable representation of women participants may be achieved by closing the gender gap in authorship and editorial board membership.


Assuntos
Autoria , Equidade de Gênero , Feminino , Humanos , Masculino , Fisiologia , Medicina Esportiva
5.
J Appl Physiol (1985) ; 134(2): 230-241, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548510

RESUMO

This study aims to investigate the effect of the menstrual cycle (MC) on exercise performance across the power-duration relationship (PDR). We hypothesized females would exhibit greater variability in the PDR across the MC than males across a similar timespan, with critical power (CP) and work-prime (W') being lower during the early follicular phase than the late follicular and midluteal phases. Seven eumenorrheic, endurance-trained female adults performed multiple constant-load-to-task-failure and maximum-power tests at three timepoints across the MC (early follicular, late follicular, and midluteal phases). Ten endurance-trained male adults performed the same tests approximately 10 days apart. No differences across the PDR were observed between MC phases (CP: 186.74 ± 31.00 W, P = 0.955, CV = 0.81 ± 0.65%) (W': 7,961.81 ± 2,537.68 J, P = 0.476, CV = 10.48 ± 3.06%). CP was similar for male and female subjects (11.82 ± 1.42 W·kg-1 vs. 11.56 ± 1.51 W·kg-1, respectively) when controlling for leg lean mass. However, W' was larger (P = 0.047) for male subjects (617.28 ± 130.10 J·kg-1) than female subjects (490.03 ± 136.70 J·kg-1) when controlling for leg lean mass. MC phase does not need to be controlled when conducting aerobic endurance performance research on eumenorrheic female subjects without menstrual dysfunction. Nevertheless, several sex differences in the power-duration relationship exist, even after normalizing for body composition. Therefore, previous studies describing the physiology of exercise performance in male subjects may not perfectly describe that of female subjects.NEW & NOTEWORTHY Females are often excluded from exercise performance research due to experimental challenges in controlling for the menstrual cycle (MC), causing uncertainty regarding how the MC impacts female performance. The present study examined the influences that biological sex and the MC have on the power-duration relationship (PDR) by comparing critical power (CP), Work-prime (W'), and maximum power output (PMAX) in males and females. Our data provide evidence that the MC does not influence the PDR and that females exhibit similar reproducibility as males. Thus, when conducting aerobic endurance exercise research on eumenorrheic females without menstrual dysfunction, the phase of the MC does not need to be controlled. Although differences in body composition account for some differences between the sexes, sex differences in W' and PMAX persisted even after normalizing for different metrics of body composition. These data highlight the necessity and feasibility of examining sex differences in performance, as previously generated male-only data within the literature may not apply to female subjects.


Assuntos
Músculo Esquelético , Resistência Física , Adulto , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Resistência Física/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Teste de Esforço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...