Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38980292

RESUMO

In the vertebrate immune system, thymus stromal microenvironments support the generation of αßT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.


Assuntos
Células Epiteliais , Timo , Timo/citologia , Timo/imunologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Animais , Humanos , Diferenciação Celular , Regeneração/fisiologia , Timócitos/citologia , Timócitos/metabolismo , Timócitos/imunologia
2.
Sci Immunol ; 9(95): eade5705, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787962

RESUMO

Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.


Assuntos
Imunodeficiência Combinada Severa , Recombinação V(D)J , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Animais , Camundongos , Recombinação V(D)J/imunologia , Recombinação V(D)J/genética , Masculino , Feminino , Lactente , Linfócitos B/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Linfócitos T/imunologia , Pré-Escolar , Mutação de Sentido Incorreto
3.
Bioessays ; 46(3): e2300165, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38161233

RESUMO

The thymus is a unique primary lymphoid organ that supports the production of self-tolerant T-cells essential for adaptive immunity. Intrathymic microenvironments are microanatomically compartmentalised, forming defined cortical, and medullary regions each differentially supporting critical aspects of thymus-dependent T-cell maturation. Importantly, the specific functional properties of thymic cortical and medullary compartments are defined by highly specialised thymic epithelial cells (TEC). For example, in the medulla heterogenous medullary TEC (mTEC) contribute to the enforcement of central tolerance by supporting deletion of autoreactive T-cell clones, thereby counterbalancing the potential for random T-cell receptor generation to contribute to autoimmune disease. Recent advances have further shed light on the pathways and mechanisms that control heterogeneous mTEC development and how differential mTEC functionality contributes to control self-tolerant T-cell development. Here we discuss recent findings in relation to mTEC development and highlight examples of how mTEC diversity contribute to thymus medulla function.


Assuntos
Linfócitos T , Timo , Timo/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo
4.
Nat Commun ; 14(1): 7201, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938566

RESUMO

As the primary site of T-cell development, the thymus dictates immune competency of the host. The rates of thymus function are not constant, and thymus regeneration is essential to restore new T-cell production following tissue damage from environmental factors and therapeutic interventions. Here, we show the alarmin interleukin (IL) 33 is a product of Sca1+ thymic mesenchyme both necessary and sufficient for thymus regeneration via a type 2 innate immune network. IL33 stimulates expansion of IL5-producing type 2 innate lymphoid cells (ILC2), which triggers a cellular switch in the intrathymic availability of IL4. This enables eosinophil production of IL4 to re-establish thymic mesenchyme prior to recovery of thymopoiesis-inducing epithelial compartments. Collectively, we identify a positive feedback mechanism of type 2 innate immunity that regulates the recovery of thymus function following tissue injury.


Assuntos
Alarminas , Interleucina-33 , Imunidade Inata , Interleucina-4 , Linfócitos
5.
Nat Commun ; 14(1): 2066, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045811

RESUMO

The thymus medulla is a key site for immunoregulation and tolerance, and its functional specialisation is achieved through the complexity of medullary thymic epithelial cells (mTEC). While the importance of the medulla for thymus function is clear, the production and maintenance of mTEC diversity remains poorly understood. Here, using ontogenetic and inducible fate-mapping approaches, we identify mTEC-restricted progenitors as a cytokeratin19+ (K19+) TEC subset that emerges in the embryonic thymus. Importantly, labelling of a single cohort of K19+ TEC during embryogenesis sustains the production of multiple mTEC subsets into adulthood, including CCL21+ mTEClo, Aire+ mTEChi and thymic tuft cells. We show K19+ progenitors arise prior to the acquisition of multiple mTEC-defining features including RANK and CCL21 and are generated independently of the key mTEC regulator, Relb. In conclusion, we identify and define a multipotent mTEC progenitor that emerges during embryogenesis to support mTEC diversity into adult life.


Assuntos
Tolerância Imunológica , Queratina-19 , Timo , Animais , Camundongos , Diferenciação Celular , Células Epiteliais , Camundongos Endogâmicos C57BL , Células-Tronco
6.
Eur J Immunol ; 53(6): e2350388, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929102

RESUMO

γδT cells are produced in the thymus throughout life and provide immunity at epithelial-rich sites. Unlike conventional αßT cells, γδT-cell development involves intrathymic acquisition of effector function, with priming for either IL17 or IFN-γ production occurring during embryonic or adult life, respectively. How the thymus controls effector-primed γδT-cell generation in adulthood is poorly understood. Here, we distinguished de novo γδT cells from those undergoing thymus recirculation and/or retention using Rag2GFP mice alongside markers of maturation/effector priming including CD24, CD25, CD73, and IFN-γ, the latter by crossing with IFN-γYFP GREAT mice. We categorize newly developing γδT-cells into an ordered sequence where CD25+ CD73- IFN-γYFP- precursors are followed sequentially by CD25- CD73+ IFN-γYFP- intermediates and CD25- CD73+ IFN-γYFP+ effectors. To determine intrathymic requirements controlling this sequence, we examined γδT-cell development in Relb-/- thymus grafts that lack medullary microenvironments. Interestingly, medulla deficiency did not alter CD25+ γδT-cell precursor generation, but significantly impaired development of effector primed stages. This impact on γδT-cell priming was mirrored in plt/plt mice lacking the medullary chemoattractants CCL19 and CCL21, and also Ccl21a-/- but not Ccl19-/- mice. Collectively, we identify the medulla as an important site for effector priming during adult γδT-cell development and demonstrate a specific role for the medullary epithelial product CCL21 in this process.


Assuntos
Interferon gama , Timo , Animais , Camundongos , Diferenciação Celular , Receptores de Antígenos de Linfócitos T gama-delta/genética
7.
Front Sports Act Living ; 4: 1005733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518117

RESUMO

The primary aim of this article is to use Foucault's idea of subjugated knowledges to search out areas and viewpoints within Fiji soccer which are suppressed by the governing authorities. To fulfill this aim, we explore and assess, via ethnographic research, the racial and ethnic aspects of Fiji soccer, from the 1970s to the 2010s, and how cultural hegemony facilitates continued Fiji Indian control and dominance within the sport. Next, and although we note the positive dimension of Fiji Football Association's 2014 Veterans' Dinner, we suggest that some ex-Ba players were apparently discriminated against by, puzzlingly, not being invited. The regulator was also unaware of, or insensitive to, ex-players' transportation needs as some were poor or invalid. We then look at the cases of Sweats Soccer Club (SSC) and Nadi Legends Football Club (NLFC) to show how, in the face of the regulator's indifference to the financial plight of an Indigenous village club (SSC), the ex-Nadi players set up instead a self-help organization (NLFC) to assist and encourage ex-players going through hard times. The latter was a cross-ethnic group/cross-class collaboration between ex-officials and ex-players and was largely outside the regulator's sphere of interest or intent.

8.
J Immunol ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36375838

RESUMO

In the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αßT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear. Using a Cxcl12 DsRed reporter mouse model, we show that changes in Cxcl12 expression reveal a developmentally regulated program of cTEC heterogeneity. Although cTECs are uniformly Cxcl12 DsRed+ during neonatal stages, progression through postnatal life triggers the appearance of Cxcl12 DsRed- cTECs that continue to reside in the cortex alongside their Cxcl12 DsRed+ counterparts. This appearance of Cxcl12 DsRed- cTECs is controlled by maturation of CD4-CD8-, but not CD4+CD8+, thymocytes, demonstrating that stage-specific thymocyte cross-talk controls cTEC heterogeneity. Importantly, although fate-mapping experiments show both Cxcl12 DsRed+ and Cxcl12 DsRed- cTECs share a common Foxn1 + cell origin, RNA sequencing analysis shows Cxcl12 DsRed- cTECs no longer express Foxn1, which results in loss of the FOXN1-dependent cTEC gene signature and may explain the reduced capacity of Cxcl12 DsRed- cTECs for thymocyte interactions. In summary, our study shows that shaping of the cTEC compartment during the life course occurs via stage-specific thymocyte cross-talk, which drives loss of Foxn1 expression and its key target genes, which may then determine the functional competence of the thymic cortex.

9.
J Immunol ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36427001

RESUMO

In the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αßT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear. Using a Cxcl12DsRed reporter mouse model, we show that changes in Cxcl12 expression reveal a developmentally regulated program of cTEC heterogeneity. Although cTECs are uniformly Cxcl12DsRed+ during neonatal stages, progression through postnatal life triggers the appearance of Cxcl12DsRed- cTECs that continue to reside in the cortex alongside their Cxcl12DsRed+ counterparts. This appearance of Cxcl12DsRed- cTECs is controlled by maturation of CD4-CD8-, but not CD4+CD8+, thymocytes, demonstrating that stage-specific thymocyte cross-talk controls cTEC heterogeneity. Importantly, although fate-mapping experiments show both Cxcl12DsRed+ and Cxcl12DsRed- cTECs share a common Foxn1+ cell origin, RNA sequencing analysis shows Cxcl12DsRed- cTECs no longer express Foxn1, which results in loss of the FOXN1-dependent cTEC gene signature and may explain the reduced capacity of Cxcl12DsRed- cTECs for thymocyte interactions. In summary, our study shows that shaping of the cTEC compartment during the life course occurs via stage-specific thymocyte cross-talk, which drives loss of Foxn1 expression and its key target genes, which may then determine the functional competence of the thymic cortex.

10.
mBio ; 13(1): e0333421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089052

RESUMO

The field of metagenomics has rapidly expanded to become the go-to method for complex microbial community analyses. However, there is currently no straightforward route from metagenomics to traditional culture-based methods of strain isolation, particularly in (bacterio)phage biology, leading to an investigative bottleneck. Here, we describe a method that exploits specific phage receptor binding protein (RBP)-host cell surface receptor interaction enabling isolation of phage-host combinations from an environmental sample. The method was successfully applied to two complex sample types-a dairy-derived whey sample and an infant fecal sample, enabling retrieval of specific and culturable phage hosts. IMPORTANCE PhRACS aims to bridge the current divide between in silico genetic analyses (i.e., phageomic studies) and traditional culture-based methodology. Through the labeling of specific bacterial hosts with fluorescently tagged recombinant phage receptor binding proteins and the isolation of tagged cells using flow cytometry, PhRACS allows the full potential of phageomic data to be realized in the wet laboratory.


Assuntos
Bacteriófagos , Microbiota , Humanos , Bacteriófagos/genética , Soro do Leite , Receptores de Bacteriófagos , Bactérias/genética , Metagenômica/métodos
11.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34910105

RESUMO

Bone marrow transplantation (BMT) is a widely used therapy for blood cancers and primary immunodeficiency. Following transplant, the thymus plays a key role in immune reconstitution by generating a naive αßT cell pool from transplant-derived progenitors. While donor-derived thymopoiesis during the early post-transplant period is well studied, the ability of the thymus to synchronize T cell development with essential tolerance mechanisms is poorly understood. Using a syngeneic mouse transplant model, we analyzed T cell recovery alongside the regeneration and function of intrathymic microenvironments. We report a specific and prolonged failure in the post-transplant recovery of medullary thymic epithelial cells (mTECs). This manifests as loss of medulla-dependent tolerance mechanisms, including failures in Foxp3+ regulatory T cell development and formation of the intrathymic dendritic cell pool. In addition, defective negative selection enables escape of self-reactive conventional αßT cells that promote autoimmunity. Collectively, we show that post-transplant T cell recovery involves an uncoupling of thymopoiesis from thymic tolerance, which results in autoimmune reconstitution caused by failures in thymic medulla regeneration.


Assuntos
Autoimunidade , Microambiente Celular/imunologia , Doença Enxerto-Hospedeiro/etiologia , Tolerância Imunológica , Timo/imunologia , Animais , Transplante de Medula Óssea/efeitos adversos , Transplante de Medula Óssea/métodos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Doença Enxerto-Hospedeiro/metabolismo , Reconstituição Imune , Camundongos , Camundongos Transgênicos , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/patologia
12.
Sci Adv ; 7(49): eabj9247, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860543

RESUMO

The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor's transcriptional activity. FOXN1's C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect.

13.
Methods Mol Biol ; 2278: 45-60, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33649947

RESUMO

At present, only a limited number of Bifidobacterium species are amenable to genetic manipulation using mutagenesis. This lack of genetic accessibility among the majority of bifidobacterial strains represents a significant roadblock for the study of gene function and expression in these potential probiotics. Genetic tools for generating mutants are difficult to develop for bifidobacteria, as they require workarounds for obstacles such as low transformation efficiencies, and the presence of differing and sometimes multiple restriction modification systems, in different strains. Site-directed mutagenesis is a frequently applied molecular strategy for the generation of targeted mutations, resulting in gene deletion or disruption, or alteration of their expression, thereby revealing information regarding their function. This strategy has been employed as a molecular tool in some Bifidobacterium strains and is typically achieved using a nonreplicating vector, harboring a DNA fragment corresponding to an internal part of the gene to be mutated. This vector is introduced into a bifidobacterial cell of the strain in question by electroporation. Through homologous recombination, this vector is integrated into the genomic DNA of said cell, disrupting the coding region of the targeted gene, thus preventing the expression of a functional protein product. Such mutant versions of Bifidobacterium strains may then be assessed for alterations in their phenotype or gene expression.


Assuntos
Bifidobacterium/genética , Mutagênese Sítio-Dirigida/métodos , Clonagem Molecular/métodos , Escherichia coli/genética , Vetores Genéticos/genética , Recombinação Homóloga , Mutação , Plasmídeos/genética
14.
Front Immunol ; 12: 634367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717173

RESUMO

The thymus supports T-cell development via specialized microenvironments that ensure a diverse, functional and self-tolerant T-cell population. These microenvironments are classically defined as distinct cortex and medulla regions that each contain specialized subsets of stromal cells. Extensive research on thymic epithelial cells (TEC) within the cortex and medulla has defined their essential roles during T-cell development. Significantly, there are additional non-epithelial stromal cells (NES) that exist alongside TEC within thymic microenvironments, including multiple subsets of mesenchymal and endothelial cells. In contrast to our current understanding of TEC biology, the developmental origins, lineage relationships, and functional properties, of NES remain poorly understood. However, experimental evidence suggests these cells are important for thymus function by either directly influencing T-cell development, or by indirectly regulating TEC development and/or function. Here, we focus attention on the contribution of NES to thymic microenvironments, including their phenotypic identification and functional classification, and explore their impact on thymus function.


Assuntos
Comunicação Celular , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Timócitos/metabolismo , Timo/metabolismo , Animais , Microambiente Celular , Células Endoteliais/imunologia , Humanos , Células-Tronco Mesenquimais/imunologia , Organogênese , Fenótipo , Transdução de Sinais , Timócitos/imunologia , Timo/embriologia , Timo/imunologia
15.
Blood Adv ; 5(1): 99-112, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33570638

RESUMO

The release of newly selected αßT cells from the thymus is key in establishing a functional adaptive immune system. Emigration of the first cohorts of αßT cells produced during the neonatal period is of particular importance, because it initiates formation of the peripheral αßT-cell pool and provides immune protection early in life. Despite this, the cellular and molecular mechanisms of thymus emigration are poorly understood. We examined the involvement of diverse stromal subsets and individual chemokine ligands in this process. First, we demonstrated functional dichotomy in the requirement for CCR7 ligands and identified CCL21, but not CCL19, as an important regulator of neonatal thymus emigration. To explain this ligand-specific requirement, we examined sites of CCL21 production and action and found Ccl21 gene expression and CCL21 protein distribution occurred within anatomically distinct thymic areas. Although Ccl21 transcription was limited to subsets of medullary epithelium, CCL21 protein was captured by mesenchymal stroma consisting of integrin α7+ pericytes and CD34+ adventitial cells at sites of thymic exit. This chemokine compartmentalization involved the heparan sulfate-dependent presentation of CCL21 via its C-terminal extension, explaining the absence of a requirement for CCL19, which lacks this domain and failed to be captured by thymic stroma. Collectively, we identified an important role for CCL21 in neonatal thymus emigration, revealing the importance of this chemokine in initial formation of the peripheral immune system. Moreover, we identified an intrathymic mechanism involving cell-specific production and presentation of CCL21, which demonstrated a functional synergy between thymic epithelial and mesenchymal cells for αßT-cell emigration.


Assuntos
Emigração e Imigração , Linfócitos T , Animais , Animais Recém-Nascidos , Camundongos , Receptores CCR7/genética , Células Estromais
16.
Semin Immunopathol ; 43(1): 15-27, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33306154

RESUMO

αßT cells are an essential component of effective immune responses. The heterogeneity that lies within them includes subsets that express diverse self-MHC-restricted αßT cell receptors, which can be further subdivided into CD4+ helper, CD8+ cytotoxic, and Foxp3+ regulatory T cells. In addition, αßT cells also include invariant natural killer T cells that are very limited in αßT cell receptor repertoire diversity and recognise non-polymorphic CD1d molecules that present lipid antigens. Importantly, all αßT cell sublineages are dependent upon the thymus as a shared site of their development. Ongoing research has examined how the thymus balances the intrathymic production of multiple αßT cell subsets to ensure correct formation and functioning of the peripheral immune system. Experiments in both wild-type and genetically modified mice have been essential in revealing complex cellular and molecular mechanisms that regulate thymus function. In particular, studies have demonstrated the diverse and critical role that the thymus medulla plays in shaping the peripheral T cell pool. In this review, we summarise current knowledge on functional properties of the thymus medulla that enable the thymus to support the production of diverse αßT cell types.


Assuntos
Linfócitos T Reguladores , Fatores de Transcrição , Animais , Diferenciação Celular , Humanos , Camundongos
17.
Sci Rep ; 10(1): 17265, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037276

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Microb Biotechnol ; 13(6): 1733-1747, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32385941

RESUMO

In this paper, we reveal and characterize cross-feeding behaviour between the common gut commensal Bacteroides cellulosilyticus (Baccell) and certain bifidobacterial strains, including Bifidobacterium breve UCC2003, when grown on a medium containing Larch Wood Arabinogalactan (LW-AG). We furthermore show that cross-feeding is dependent on the release of ß-1,3-galacto-di/trisaccharides (ß-1,3-GOS), and identified that the bga gene cluster of B. breve UCC2003 allows ß-1,3-GOS metabolism. The product of bgaB is presumed to be responsible for the import of ß-1,3-GOS, while the bgaA gene product, a glycoside hydrolase family 2 member, was shown to hydrolyse both ß-1,3-galactobiose and ß-1,3-galactotriose into galactose monomers. This study advances our understanding of strain-specific syntrophic interactions between two glycan degraders in the human gut in the presence of AG-type dietary polysaccharides.


Assuntos
Microbioma Gastrointestinal , Bacteroides , Bifidobacterium/genética , Comportamento Alimentar , Galactanos , Humanos
19.
Nat Commun ; 11(1): 2198, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366944

RESUMO

The thymus supports multiple αß T cell lineages that are functionally distinct, but mechanisms that control this multifaceted development are poorly understood. Here we examine medullary thymic epithelial cell (mTEC) heterogeneity and its influence on CD1d-restricted iNKT cells. We find three distinct mTEClow subsets distinguished by surface, intracellular and secreted molecules, and identify LTßR as a cell-autonomous controller of their development. Importantly, this mTEC heterogeneity enables the thymus to differentially control iNKT sublineages possessing distinct effector properties. mTEC expression of LTßR is essential for the development thymic tuft cells which regulate NKT2 via IL-25, while LTßR controls CD104+CCL21+ mTEClow that are capable of IL-15-transpresentation for regulating NKT1 and NKT17. Finally, mTECs regulate both iNKT-mediated activation of thymic dendritic cells, and iNKT availability in extrathymic sites. In conclusion, mTEC specialization controls intrathymic iNKT cell development and function, and determines iNKT pool size in peripheral tissues.


Assuntos
Diferenciação Celular/imunologia , Células Epiteliais/imunologia , Células T Matadoras Naturais/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Proliferação de Células/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária/imunologia , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/imunologia , Receptor beta de Linfotoxina/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Timo/citologia , Timo/metabolismo
20.
Int J Food Microbiol ; 316: 108476, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31874325

RESUMO

This work aimed to investigate the ability of two human-derived bifidobacterial strains, i.e. Bifidobacterium breve UCC2003 and Bifidobacterium longum NCIMB 8809, to utilize various oligosaccharides (i.e., 4-galactosyl-kojibiose, lactulosucrose, lactosyl-oligofructosides, raffinosyl-oligofructosides and lactulose-derived galacto-oligosaccharides) synthesized by means of microbial glycoside hydrolases. With the exception of raffinosyl-oligofructosides, these biosynthetic oligosaccharides were shown to support growth acting as a sole carbon and energy source of at least one of the two studied strains. Production of short-chain fatty acids (SCFAs) as detected by HPLC analysis corroborated the suitability of most of the studied novel oligosaccharides as fermentable growth substrates for the two bifidobacterial strains, showing that acetic acid is the main metabolic end product followed by lactic and formic acids. Transcriptomic and functional genomic approaches carried out for B. breve UCC2003 allowed the identification of key genes encoding glycoside hydrolases and carbohydrate transport systems involved in the metabolism of 4-galactosyl-kojibiose and lactulosucrose. In particular, the role of ß-galactosidases in the hydrolysis of these particular trisaccharides was demonstrated, highlighting their importance in oligosaccharide metabolism by human bifidobacterial strains.


Assuntos
Bifidobacterium breve/metabolismo , Bifidobacterium longum/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Bactérias/genética , Bifidobacterium breve/crescimento & desenvolvimento , Bifidobacterium breve/isolamento & purificação , Bifidobacterium longum/crescimento & desenvolvimento , Bifidobacterium longum/isolamento & purificação , Metabolismo dos Carboidratos/genética , Ácidos Graxos Voláteis/biossíntese , Ácidos Graxos Voláteis/química , Fermentação , Glicosídeo Hidrolases/genética , Humanos , Oligossacarídeos/química , Transcriptoma , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...