Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemistry ; : e202401581, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771299

RESUMO

Transition metal carbides find widespread use throughout industry due to their high strength and resilience under extreme conditions. However, they remain largely limited to compounds formed from the early d-block elements, since the mid-to-late transition metals do not form thermodynamically stable carbides. We report here the high-pressure bulk synthesis of large single crystals of a novel metastable manganese carbide compound, MnCx (P63/mmc), which adopts the anti-NiAs-type structure with significant substoichiometry at the carbon sites. We demonstrate how synthesis pressure modulates the carbon loading, with ~40 % occupancy being achieved at 9.9 GPa.

2.
Inorg Chem ; 63(21): 9763-9770, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38739043

RESUMO

The delafossites are a class of layered metal oxides that are notable for being able to exhibit optical transparency alongside an in-plane electrical conductivity, making them promising platforms for the development of transparent conductive oxides. Pressure-induced polymorphism offers a direct method for altering the electrical and optical properties in this class, and although the copper delafossites have been studied extensively under pressure, the silver delafossites remain only partially studied. We report two new high-pressure polymorphs of silver ferrite delafossite, AgFeO2, that are stabilized above ∼6 and ∼14 GPa. In situ X-ray diffraction and vibrational spectroscopy measurements are used to examine the structural changes across the two phase transitions. The high-pressure structure between 6 and 14 GPa is assigned as a monoclinic C2/c structure that is analogous to the high-pressure phase reported for AgGaO2. Nuclear resonant forward scattering reveals no change in the spin state or valence state at the Fe3+ site up to 15.3(5) GPa.

3.
Psychol Res ; 88(2): 684-694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37561201

RESUMO

There is growing evidence to suggest that physical activity positively influences cognitive processes. A similar trend is seen in the literature examining the relationship between acute physical activity and creativity. Nevertheless, certain questions persist: Does engaging in physical activity over an extended period (chronic) influence creativity? If it does, what is the duration of this impact? The present study uses Randomized Controlled Trials (RCT) to examine whether chronic physical activity for 6 weeks can improve individual creativity vis-à-vis a control group that performs regular class activity without any physical activity. It also assesses whether the effect of chronic physical activity on creativity endures after 2 weeks of ceasing the interventions. The study involves 49 school students who were randomly assigned to either the experimental or the control conditions. Their creativity, operationalized as divergent thinking is measured using the Alternate Uses Task. The measurements are taken before the intervention, again 6 weeks later, and once more, after 2 weeks of cessation of interventions. The results indicate that after 6 weeks of engaging in physical activity, the participants showed improvements in both the fluency and originality components of divergent thinking when compared to the control group. Furthermore, the results demonstrate a lingering effect of physical activity on the originality component of divergent thinking. The findings lend some support to the strength model of self-control. The implications for research and practice are further discussed in the study.


Assuntos
Criatividade , Pensamento , Humanos , Exercício Físico , Estudantes , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Heliyon ; 8(7): e09843, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35815149

RESUMO

This study explores the relationship between student motivation and student engagement. The study, which is rooted in the self-determination (SDT) and engagement (JD-R) theories, responds to the contemporary call for studying this relationship. A bipartite construct of motivation measures both positive and negative components of motivation and structural equation modeling (SEM) by using data from 693 undergraduate and graduate students. In doing so, the study finds that student motivation is an antecedent of engagement. Adaptive cognition and behavior are positively related to engagement (ß = 0.30, ß = 0.60); maladaptive cognitions and behavior are negatively related to engagement (ß = -0.54). The study advances SDT and JD-R. Implications for educationists and possible interventions to enhance motivation and, consequently, engagement are discussed. The study brings clarity to the student motivation-engagement relationship.

5.
J Am Chem Soc ; 143(1): 214-222, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372790

RESUMO

Incorporating bismuth, the heaviest element stable to radioactive decay, into new materials enables the creation of emergent properties such as permanent magnetism, superconductivity, and nontrivial topology. Understanding the factors that drive Bi reactivity is critical for the realization of these properties. Using pressure as a tunable synthetic vector, we can access unexplored regions of phase space to foster reactivity between elements that do not react under ambient conditions. Furthermore, combining computational and experimental methods for materials discovery at high-pressures provides broader insight into the thermodynamic landscape than can be achieved through experiment alone, informing our understanding of the dominant chemical factors governing structure formation. Herein, we report our combined computational and experimental exploration of the Mo-Bi system, for which no binary intermetallic structures were previously known. Using the ab initio random structure searching (AIRSS) approach, we identified multiple synthetic targets between 0-50 GPa. High-pressure in situ powder X-ray diffraction experiments performed in diamond anvil cells confirmed that Mo-Bi mixtures exhibit rich chemistry upon the application of pressure, including experimental realization of the computationally predicted CuAl2-type MoBi2 structure at 35.8(5) GPa. Electronic structure and phonon dispersion calculations on MoBi2 revealed a correlation between valence electron count and bonding in high-pressure transition metal-Bi structures as well as identified two dynamically stable ambient pressure polymorphs. Our study demonstrates the power of the combined computational-experimental approach in capturing high-pressure reactivity for efficient materials discovery.

6.
Phys Rev Lett ; 125(7): 077202, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857531

RESUMO

We report a pressure-induced phase transition in the frustrated kagomé material jarosite at ∼45 GPa, which leads to the disappearance of magnetic order. Using a suite of experimental techniques, we characterize the structural, electronic, and magnetic changes in jarosite through this phase transition. Synchrotron powder x-ray diffraction and Fourier transform infrared spectroscopy experiments, analyzed in aggregate with the results from density functional theory calculations, indicate that the material changes from a R3[over ¯]m structure to a structure with a R3[over ¯]c space group. The resulting phase features a rare twisted kagomé lattice in which the integrity of the equilateral Fe^{3+} triangles persists. Based on symmetry arguments we hypothesize that the resulting structural changes alter the magnetic interactions to favor a possible quantum paramagnetic phase at high pressure.

7.
Acta Psychol (Amst) ; 209: 103121, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32731011

RESUMO

There is increasing demand for individual creativity as organizations seek innovative ways to remain relevant. Higher education institutions, particularly business schools, are sensitive to this demand and are constantly in search for innovative ways to enhance the creative ability of their students. Prior studies have shown encouraging results for physical activity-oriented interventions. Building on this research, this study uses Randomized Controlled Trial (RCT) to understand if an acute combinatory intervention, involving both physical and mental exercises embodied in Hatha yoga can improve individual creativity. This study uses 92 MBA student participants to investigate the impact of a 20-minute Hatha yoga session intervention against a short 20-minute case study session for the control group. Creative ability of the participants is operationalized through divergent and convergent thinking, which are then assessed through counter-balanced forms of Guilford Alternate Uses tasks and Remote Associate Test, respectively. The results show that while Hatha yoga significantly improves divergent thinking, the control group shows deterioration in divergent thinking. There is no effect on convergent thinking. These findings lend some support to the executive function hypothesis. The study also finds that prodding a person to be more creative on a routine academic task may not enhance their creative ability.


Assuntos
Criatividade , Estudantes , Yoga , Função Executiva , Exercício Físico , Humanos , Estudantes/psicologia
8.
Sci Total Environ ; 739: 140077, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32554119

RESUMO

Johnson grass (Sorghum halepense (L.) Pers.) is rapidly spreading throughout the continental United States (U.S.). Thus, determining magnitudes and seasonal dynamics of carbon dioxide (CO2) and water vapor (H2O) fluxes in Johnson grass is crucial to understand regional changes in hydrology and carbon balance. Using eddy covariance (EC), CO2 and H2O fluxes were measured from June 2017 to October 2019 over a rainfed Johnson grass field in central Oklahoma. Hay was harvested from late May to early July each year, with biomass yield ~7.5 t ha-1. Weekly averaged daily integrated net ecosystem CO2 exchange (NEE), gross primary production (GPP), and evapotranspiration (ET) reached -8.28 ± 0.76 g C m-2, 20.02 ± 1.62 g C m-2, and 5.42 ± 0.26 mm, respectively. Ecosystem water use efficiency (EWUE) and ecosystem light use efficiency (ELUE) ranged from 3.22 to 3.93 g C mm-1 ET and 0.34 to 0.41 g C mol-1 PAR (photosynthetically active radiation), respectively, during peak growths. Based on aggregated fluxes for each month over the three years (2017-2019), cumulative annual NEE was -434 ± 112 g C m-2, indicating a carbon gain by the Johnson grass field. Cumulative annual ET (858 ± 72 mm) was ~86% of the average annual rainfall (996 ± 100 mm). Results showed Johnson grass could be a carbon sink from May to September in the U.S. Southern Great Plains. Both NEE and ET did not decline up to air temperature (Ta) of ~33 °C and vapor pressure deficit (VPD) of ~2 kPa, suggesting optimum Ta of ≥33 °C and VPD of ≥2 kPa for the fluxes. Results indicated that Johnson grass might be well suited for dryland production in the region. Additionally, these findings provide initial baseline information on CO2 fluxes and ET for Johnson grass relative to other forage species in the region.


Assuntos
Dióxido de Carbono/análise , Sorghum , Ecossistema , Oklahoma , Estações do Ano , Estados Unidos
9.
Sci Total Environ ; 712: 136407, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31931220

RESUMO

Eddy covariance (EC) systems provide integrated fluxes within their footprint areas. Spatial heterogeneity of up-scaled areas and spatio-temporal mismatches between EC footprint and remote sensing pixels jeopardize the performance of most satellite-based models. To examine the impact of spatial resolution of satellite products on up-scaling of fluxes, we compared the relationships between measured eddy fluxes and enhanced vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 and 250 m spatial resolutions, Visible Infrared Imaging Radiometer Suite (VIIRS) at 500 m spatial resolution, and Landsat at 30 m spatial resolution but integrated at the paddock-scale. The experiment was conducted over a grazed native tallgrass prairie pasture, which was divided into nine paddocks for rotational grazing. The EVI data from all satellites showed consistency in detecting vegetation phenology. Seasonality of EC-measured fluxes corresponded well with remotely-sensed vegetation phenology. Approximately 80% of contribution to eddy fluxes came from within 80 m upwind distance of the 2.7 m tall EC tower. As a result, the major contributing area for the measured fluxes was mostly limited to the paddock containing the EC tower. Different timings and duration of grazing caused some heterogeneity among paddocks within the pasture. The EVI of different spatial scales showed strong relationships with CO2 fluxes. However, Landsat-derived EVI integrated for the paddock containing the EC tower showed substantially stronger relationships with CO2 fluxes than did MODIS and VIIRS-derived EVI integrated for multiple paddocks, most likely due to similar spatial resolutions of remote sensing and EC observations. Results illustrate that satellite products of fine-scale spatial resolution that are comparable to EC footprints can help improve the performance of satellite-based models for modeling or up-scaling of eddy fluxes, especially in heterogeneous ecosystems.

10.
Percept Mot Skills ; 126(4): 603-622, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31088207

RESUMO

While prior studies have examined the positive influence of physical activity (PA) programs on children's creative potential, they have not explored the mediating roles of psychological and physiological variables. In this study, we investigated the impact of a single dance session as a form of PA on two indicators of creative potential-divergent and convergent thinking, each of which adopts a different cognitive pathway. We also investigated the influence of a physiological condition, low body mass index (BMI), on the relation between PA and creative potential. This was a randomized controlled experiment involving 34 school children randomly assigned to either the dance intervention or a sedentary group based on their BMI profile. We measured the children's divergent and convergent thinking at pre- and post-intervention time points. Following this single PA session, we found a significant difference between divergent and convergent thinking abilities in treatment group participants with normal BMI levels and participants in the control group, but there was no difference between low BMI level treatment group participants and those in the control group. This study supported hypothesized boundary conditions for executive function improvements from PA and suggests a need for a holistic approach (involving both proper nourishment and PA) in order to facilitate improved creativity in children.


Assuntos
Índice de Massa Corporal , Desenvolvimento Infantil/fisiologia , Dançaterapia/métodos , Função Executiva/fisiologia , Exercício Físico/fisiologia , Pensamento/fisiologia , Criança , Criatividade , Feminino , Humanos , Masculino
11.
Inorg Chem ; 58(5): 3211-3218, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30762344

RESUMO

A breakthrough in the study of single-molecule magnets occurred with the discovery of zero-field slow magnetic relaxation and hysteresis for the linear iron(I) complex [Fe(C(SiMe3)3)2]- (1), which has one of the largest spin-reversal barriers among mononuclear transition-metal single-molecule magnets. Theoretical studies have suggested that the magnetic anisotropy in 1 is made possible by pronounced stabilization of the iron d z2 orbital due to 3d z2-4s mixing, an effect which is predicted to be less pronounced in the neutral iron(II) complex Fe(C(SiMe3)3)2 (2). However, experimental support for this interpretation has remained lacking. Here, we use high-resolution single-crystal X-ray diffraction data to generate multipole models of the electron density in these two complexes, which clearly show that the iron d z2 orbital is more populated in 1 than in 2. This result can be interpreted as arising from greater stabilization of the d z2 orbital in 1, thus offering an unprecedented experimental rationale for the origin of magnetic anisotropy in 1.

12.
Angew Chem Int Ed Engl ; 57(39): 12809-12813, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30252191

RESUMO

Materials discovery enables both realization and understanding of new, exotic, physical phenomena. An emerging approach to the discovery of novel phases is high-pressure synthesis within diamond anvil cells, thereby enabling in situ monitoring of phase formation. Now, the discovery via high-pressure synthesis of the first intermetallic compound in the Cu-Pb system, Cu3Pb is reported. Cu3Pb is notably the first structurally characterized mid- to late-first-row transition-metal plumbide. The structure of Cu3Pb can be envisioned as a direct mixture of the two elemental lattices. From this new framework, we gain insight into the structure as a function of pressure and hypothesize that the high-pressure polymorph of lead is a possible prerequisite for the formation of Cu3Pb. Crucially, electronic structure computations reveal band crossings near the Fermi level, suggesting that chemically doped Cu3Pb could be a topologically nontrivial material.

13.
J Am Chem Soc ; 140(38): 12001-12009, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30063832

RESUMO

Jarosite, a mineral with a kagomé lattice, displays magnetic frustration yet orders magnetically below 65 K. As magnetic frustration can engender exotic physical properties, understanding the complex magnetism of jarosite comprises a multidecade interdisciplinary challenge. Unraveling the nature of the disparate magnetic coupling interactions that lead to magnetic order in jarosite remains an open question. Specifically, there is no observed trend in the interlayer spacing with magnetic order. Similarly, the relationship between metal-ligand bond distance and magnetic order remains uninvestigated. Here, we use applied pressure to smoothly vary jarosite's structure without manipulating the chemical composition, enabling a chemically invariant structure-function study. Using single-crystal and powder X-ray diffraction, we show that high applied pressures alter both the interlayer spacing and the metal-ligand bond distances. By harnessing a suite of magnetic techniques under pressure, including SQUID-based magnetometry, time-resolved synchrotron Mössbauer spectroscopy, and X-ray magnetic circular dichroism, we construct the magnetic phase diagram for jarosite up to 40 GPa. Notably, we demonstrate that the magnetic ordering temperature increases dramatically to 240 K at the highest pressures. Additionally, we conduct X-ray emission spectroscopy, Mössbauer spectroscopy, and UV-visible absorption spectroscopy experiments to comprehensively map the magnetic and electronic structures of jarosite at high pressure. We use these maps to construct chemically pure magnetostructural correlations which fully explain the nature and role of the disparate magnetic coupling interactions in jarosite.

14.
Water Res ; 139: 450-461, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730581

RESUMO

Wastewater treatment ecotechnologies such as constructed wetlands and denitrifying bioreactors are commonly perceived as robust and resilient to shock loading, but this has proved difficult to quantify, particularly when comparing different systems. This study proposes a method of quantifying and comparing performance resilience in response to a standard disturbance. In a side-by-side study we compare the treatment performance of four different configurations of wetlands and denitrifying bioreactors subjected to hydraulic shock loads of five times the standard inflow rate of primary treated sewage for five days. The systems consist of: horizontal-flow gravel-bed wetlands (HG); single pass vertical-flow sand or gravel media wetlands followed by carbonaceous denitrifying bioreactors (VS + C and VG + C respectively); and a recirculating anoxic attached-growth bioreactor and vertical sand media wetland followed by carbonaceous denitrifying bioreactors (R(A + VS)+C). Resilience was quantified for Total Suspended Solids (TSS), Five-day Biochemical Oxygen Demand (BOD5) and Total Nitrogen (TN) by time integration of Relative Disturbance in Performance relative to pre-shock loading performance (days equivalent Performance Reduction), and by the Recovery Time after shock loading ceased. The quantification method allowed an unbiased comparison of the four different systems. It highlighted important differences in the resilience for different removal mechanisms associated with the configuration of the wetlands/bioreactor systems. Relative Disturbances in Performance were expressed in comparison to percent daily removal under standard loading, and, for the different pollutants were equivalent to loss of between 0.08 and 2.51 days of removal capacity. Average Recovery Times ranged from zero to three days, with all systems exhibiting substantial recovery even during the five-day shock loading period. This study demonstrated that both the horizontal gravel wetland and the vertical flow wetland systems combined with carbonaceous bioreactors tested are generally resilient to shock loading of five times hydraulic and organic loading for periods of up to five days. Standard quantification of performance resilience to shock loadings or other perturbations has potential application across a wide range of technologies and research fields.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Nitrogênio/análise , Águas Residuárias/análise
15.
Acc Chem Res ; 51(6): 1315-1323, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29812893

RESUMO

The application of high pressure adds an additional dimension to chemical phase space, opening up an unexplored expanse bearing tremendous potential for discovery. Our continuing mission is to explore this new frontier, to seek out new intermetallic compounds and new solid-state bonding. Simple binary elemental systems, in particular those composed of pairs of elements that do not form compounds under ambient pressures, can yield novel crystalline phases under compression. Thus, high-pressure synthesis can provide access to solid-state compounds that cannot be formed with traditional thermodynamic methods. An emerging approach for the rapid exploration of composition-pressure-temperature phase space is the use of hand-held high-pressure devices known as diamond anvil cells (DACs). These devices were originally developed by geologists as a way to study minerals under conditions relevant to the earth's interior, but they possess a host of capabilities that make them ideal for high-pressure solid-state synthesis. Of particular importance, they offer the capability for in situ spectroscopic and diffraction measurements, thereby enabling continuous reaction monitoring-a powerful capability for solid-state synthesis. In this Account, we provide an overview of this approach in the context of research we have performed in the pursuit of new intermetallic compounds. We start with a discussion of pressure as a fundamental experimental variable that enables the formation of intermetallic compounds that cannot be isolated under ambient conditions. We then introduce the DAC apparatus and explain how it can be repurposed for use as a synthetic vessel with which to explore this phase space, going to extremes of pressure where no chemist has gone before. The remainder of the Account is devoted to discussions of recent experiments we have performed with this approach that have led to the discovery of novel intermetallic compounds in the Fe-Bi, Cu-Bi, and Ni-Bi systems, with a focus on the cutting-edge methods that made these experiments possible. We review the use of in situ laser heating at high pressure, which led to the discovery of FeBi2, the first binary intermetallic compound in the Fe-Bi system. Our work in the Cu-Bi system is described in the context of in situ experiments carried out in the DAC to map its high-pressure phase space, which revealed two intermetallic phases (Cu11Bi7 and CuBi). Finally, we review the discovery of ß-NiBi, a novel high-pressure phase in the Ni-Bi system. We hope that this Account will inspire the next generation of solid-state chemists to boldly explore high-pressure phase space.

16.
ACS Cent Sci ; 2(11): 867-871, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27924316

RESUMO

Recent advances in high-pressure techniques offer chemists access to vast regions of uncharted synthetic phase space, expanding our experimental reach to pressures comparable to the core of the Earth. These newfound capabilities enable us to revisit simple binary systems in search of compounds that for decades have remained elusive. The most tantalizing of these targets are systems in which the two elements in question do not interact even as molten liquids-so-called immiscible systems. As a prominent example, immiscibility between iron and bismuth is so severe that no material containing Fe-Bi bonds is known to exist. The elusiveness of Fe-Bi bonds has a myriad of consequences; crucially, it precludes completing the iron pnictide superconductor series. Herein we report the first iron-bismuth binary compound, FeBi2, featuring the first Fe-Bi bond in the solid state. We employed geologically relevant pressures, similar to the core of Mars, to access FeBi2, which we synthesized at 30 GPa and 1500 K. The compound crystallizes in the Al2Cu structure type (space group I4/mcm) with a = 6.3121(3) Å and c = 5.4211(4) Å. The new binary intermetallic phase persists from its formation pressure of 30 GPa down to 3 GPa. The existence of this phase at low pressures suggests that it might be quenchable to ambient pressure at low temperatures. These results offer a pathway toward the realization of new exotic materials.

17.
Angew Chem Int Ed Engl ; 55(43): 13446-13449, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27666749

RESUMO

A new intermetallic compound, the first to be structurally identified in the Cu-Bi binary system, is reported. This compound is accessed by high-pressure reaction of the elements. Its detailed characterization, physical property measurements, and ab initio calculations are described. The commensurate crystal structure of Cu11 Bi7 is a unique variation of the NiAs structure type. Temperature-dependent electrical resistivity and heat capacity measurements reveal a bulk superconducting transition at Tc =1.36 K. Density functional theory calculations further demonstrate that Cu11 Bi7 can be stabilized (relative to decomposition into the elements) at high pressure and temperature. These results highlight the ability of high-pressure syntheses to allow for inroads into heretofore-undiscovered intermetallic systems for which no thermodynamically stable binaries are known.

18.
Dalton Trans ; 45(32): 12924-32, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477872

RESUMO

The crystal structure of the first oligomeric cobalt dioxolene complex, Co3(3,5-DBSQ)2((t)BuCOO)4(NEt3)2, 1, where DBSQ is 3,5-di-tert-butyl-semiquinonate, has been studied at various temperatures between 20 and 200 K. Despite cobalt-dioxolene complexes being generally known for their extensive ability to exhibit valence tautomerism (VT), we show here that the molecular geometry of compound 1 is essentially unchanged over the full temperature range, indicating the complete absence of electron transfer between ligand and metal. Magnetic susceptibility measurements clearly support the lack of VT between 8 and 300 K. The crystal structure is also determined at elevated pressures in the range from 0 to 2.5 GPa. The response of the crystal structure is surprisingly dependent on the dynamics of pressurisation: following rapid pressurization to 2 GPa, a structural phase transition occurs; yet, this is absent when the pressure is increased incrementally to 2.6 GPa. In the new high pressure phase, Z' is 2 and one of the two molecules displays changes in the coordination of one bridging carboxylate from µ2:κO:κO' to µ2:κ(2)O,O':κO', while the other molecule remains unchanged. Despite the significant changes to the molecular connectivity, analysis of the crystal structures shows that the phase transition leaves the spin and oxidation states of the molecules unaltered. Intermolecular interactions in the high pressure crystal structures have been analysed using Hirshfeld surfaces but they cannot explain the origin of the phase transition. The lack of VT in this first oligomeric Co-dioxolene complex is speculated to be due to the coordination geometry of the terminal Co-atoms, which are trigonal bipyramidally coordinated, different from the more common octahedral coordination. The energy that is gained by a hs-to-ls change in Oh is equal to Δ, while in the case of the trigonal bipyramidal (C3v), the energy gain is equal to the splitting between d(z(2)) and degenerate d(x(2) - y(2))/d(xy), which is significantly less.

19.
Inorg Chem ; 54(24): 12019-26, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26636473

RESUMO

A novel fluoride-centered triangular-bridged carboxylate complex, [Ni2Cr(µ3-F)(O2C(t)Bu)6(HO2C(t)Bu)3] (1), is reported. Simple postsynthetic substitution of the terminal pivalic acids in 1 with pyridine and 4-methylpyridine led to the isolation of [Ni2Cr(µ3-F)(O2C(t)Bu)6(C5H5N)3] (2) and [Ni2Cr(µ3-F)(O2C(t)Bu)6((4-CH3)C5H4N)3] (3). Structural and magnetic characterizations carried out on the series reveal a dominating antiferromagnetic interaction between the nickel and chromium centers leading to an S = (1)/2 ground state with a very unusual value of geff = 2.48.

20.
Dalton Trans ; 44(12): 5587-601, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25697757

RESUMO

Structurally diverse mononuclear, dinuclear, and tetranuclear cobalt organophosphates and a three-dimensional framework based on a D4R cobalt phosphate are reported. The role of auxiliary ligands in determining the nuclearity of the phosphate clusters has further been established. Reaction of cobalt acetate tetrahydrate with 2,6-di-iso-propylphenylphosphate (dippH2) in methanol or DMSO in the presence of ancillary N-donor ligands leads to the formation of mononuclear octahedral cobalt phosphate [Co(dippH)2(py)4] (1), dinuclear octahedral cobalt phosphates [Co(dipp)(NN)(MeOH)2]2·2MeOH (NN = bpy 2; phen 3), tetrahedral cobalt phosphates [Co(dipp)(L)2]2·2(MeOH) (L = imz 4; dmpz 5) and symmetric and asymmetric tetranuclear tetrahedral cobalt phosphates [Co(dipp)(2-apy)]4 (6) and [Co4(dipp)4(2-apy)3(DMSO)]·(DMSO)·(H2O) (7), in nearly quantitative yields. The use of a linear N-donor ditopic linker, 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine (dptz), as the ancillary ligand leads to the formation of a robust three dimensional, four-fold interpenetrated network based on the D4R platform, {[Co(dipp)(dptz)0.5]4}n (8), under ambient conditions. The new compounds have been characterized by analytical, thermo-analytical and spectroscopic techniques. Further, the molecular structures of compounds 1-8 have been established using single crystal X-ray diffraction studies. Compound 1 is a mononuclear complex in which the dippH ligands occupy trans-positions around the octahedral cobalt ion. The core structure of compounds 2-5, a Co2P2O4 ring, resembles the S4R (single-4-ring) SBU of zeolites, whereas the Co4P4O12 inorganic core found in compounds 6 and 7 resembles the D4R (double-4-ring) SBU. Cobalt organophosphate framework 8 shows significant CO2 adsorption at 273 K (7.73 wt% at 1 bar and 18.21 wt% at 15.5 bar) with high selectivity to CO2 uptake over N2 and H2 at 273 K. Magnetic studies of these symmetric complexes indicate the presence of weak antiferromagnetic interactions between the metal ions via the phosphate bridging moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...