Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Nanomedicine ; 19: 3697-3714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681091

RESUMO

Introduction: Over 75% of clinical microbiological infections are caused by bacterial biofilms that grow on wounds or implantable medical devices. This work describes the development of a new poly(diallyldimethylammonium chloride) (PDADMAC)/alginate-coated gold nanorod (GNR/Alg/PDADMAC) that effectively disintegrates the biofilms of Staphylococcus aureus (S. aureus), a prominent pathogen responsible for hospital-acquired infections. Methods: GNR was synthesised via seed-mediated growth method, and the resulting nanoparticles were coated first with Alg and then PDADMAC. FTIR, zeta potential, transmission electron microscopy, and UV-Vis spectrophotometry analysis were performed to characterise the nanoparticles. The efficacy and speed of the non-coated GNR and GNR/Alg/PDADMAC in disintegrating S. aureus-preformed biofilms, as well as their in vitro biocompatibility (L929 murine fibroblast) were then studied. Results: The synthesised GNR/Alg/PDADMAC (mean length: 55.71 ± 1.15 nm, mean width: 23.70 ± 1.13 nm, aspect ratio: 2.35) was biocompatible and potent in eradicating preformed biofilms of methicillin-resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) when compared to triclosan, an antiseptic used for disinfecting S. aureus colonisation on abiotic surfaces in the hospital. The minimum biofilm eradication concentrations of GNR/Alg/PDADMAC (MBEC50 for MRSA biofilm = 0.029 nM; MBEC50 for MSSA biofilm = 0.032 nM) were significantly lower than those of triclosan (MBEC50 for MRSA biofilm = 10,784 nM; MBEC50 for MRSA biofilm 5967 nM). Moreover, GNR/Alg/PDADMAC was effective in eradicating 50% of MRSA and MSSA biofilms within 17 min when used at a low concentration (0.15 nM), similar to triclosan at a much higher concentration (50 µM). Disintegration of MRSA and MSSA biofilms was confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy. Conclusion: These findings support the potential application of GNR/Alg/PDADMAC as an alternative agent to conventional antiseptics and antibiotics for the eradication of medically important MRSA and MSSA biofilms.


Assuntos
Alginatos , Antibacterianos , Biofilmes , Ouro , Nanotubos , Polietilenos , Compostos de Amônio Quaternário , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Alginatos/química , Alginatos/farmacologia , Nanotubos/química , Animais , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibacterianos/farmacologia , Antibacterianos/química , Polietilenos/química , Polietilenos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Linhagem Celular , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
2.
Plant Direct ; 7(4): e492, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37102161

RESUMO

Plant growth-promoting bacteria (PGPB) may be of use for increasing crop yield and plant resilience to biotic and abiotic stressors. Using hyperspectral reflectance data to assess growth-related traits may shed light on the underlying genetics as such data can help assess biochemical and physiological traits. This study aimed to integrate hyperspectral reflectance data with genome-wide association analyses to examine maize growth-related traits under PGPB inoculation. A total of 360 inbred maize lines with 13,826 single nucleotide polymorphisms (SNPs) were evaluated with and without PGPB inoculation; 150 hyperspectral wavelength reflectances at 386-1021 nm and 131 hyperspectral indices were used in the analysis. Plant height, stalk diameter, and shoot dry mass were measured manually. Overall, hyperspectral signatures produced similar or higher genomic heritability estimates than those of manually measured phenotypes, and they were genetically correlated with manually measured phenotypes. Furthermore, several hyperspectral reflectance values and spectral indices were identified by genome-wide association analysis as potential markers for growth-related traits under PGPB inoculation. Eight SNPs were detected, which were commonly associated with manually measured and hyperspectral phenotypes. Different genomic regions were found for plant growth and hyperspectral phenotypes between with and without PGPB inoculation. Moreover, the hyperspectral phenotypes were associated with genes previously reported as candidates for nitrogen uptake efficiency, tolerance to abiotic stressors, and kernel size. In addition, a Shiny web application was developed to explore multiphenotype genome-wide association results interactively. Taken together, our results demonstrate the usefulness of hyperspectral-based phenotyping for studying maize growth-related traits in response to PGPB inoculation.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-492815

RESUMO

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogs, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogs must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogs compete, has not been discerned in detail. Here, we use cryo-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart ATP3,4. Our results elucidate the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN, an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds GTP, strengthening proposals for the role of this domain in the formation of the 5 RNA cap6.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-468168

RESUMO

The SARS-CoV-2 nonstructural proteins coordinate genome replication and gene expression. Structural analyses revealed the basis for coupling of the essential nsp13 helicase with the RNA dependent RNA polymerase (RdRp) where the holo-RdRp and RNA substrate (the replication-transcription complex, or RTC) associated with two copies of nsp13 (nsp132-RTC). One copy of nsp13 interacts with the template RNA in an opposing polarity to the RdRp and is envisaged to drive the RdRp backwards on the RNA template (backtracking), prompting questions as to how the RdRp can efficiently synthesize RNA in the presence of nsp13. Here, we use cryo-electron microscopy and molecular dynamics simulations to analyze the nsp132-RTC, revealing four distinct conformational states of the helicases. The results suggest a mechanism for the nsp132-RTC to turn backtracking on and off, using an allosteric mechanism to switch between RNA synthesis or backtracking in response to stimuli at the RdRp active site.

5.
Methods Mol Biol ; 2355: 9-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386946

RESUMO

Peptides and proteins have played an important role in many biological processes, functioning as enzymes, hormones, ligands, receptors, cell mediators, and structural components of cells. Being intrinsic molecules in signaling pathways, peptides allow for therapeutic intervention that closely mimic natural signaling cascades. However, the short chain of amino acids in free peptides is susceptible to proteolysis in vivo. Conjugation of peptides onto nanoparticles has been used as a strategy to extend peptide half-life through conferring steric hindrance and a high packing density that prevents proteolytic enzymes to degrade them. Here, we describe a method to conjugate the anticancer p53 peptides as our model peptide onto 12 nm gold nanoparticles (AuNPs) to form the AuNP-p53 peptide conjugate. Conjugation of the p53 short-chain peptide of 25 amino acids occurs through a combination of electrostatic interactions and covalent bonds between cysteine residues at the N-terminal of the peptide and the surface of the AuNPs. The AuNPs and AuNP-p53 are characterized by UV-Vis spectroscopy for its optical absorbance and zetasizer for their hydrodynamic diameter and zeta potential. The semiquantitative analysis of the amount of conjugated peptides on the AuNPs and peptide stability under trypsin treatment is performed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).


Assuntos
Nanopartículas Metálicas , Aminoácidos , Fenômenos Biológicos , Ouro/metabolismo , Peptídeos , Proteína Supressora de Tumor p53
6.
Langmuir ; 37(16): 4913-4923, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33861611

RESUMO

Studies have established that a serum protein corona pre-formed around gold nanorods (NRs) could be exploited for loading photosensitizers and chemotherapeutics to result in efficient cell kill in vitro with an extremely low dose. In this study, we further demonstrated that pre-forming a serum protein corona (PC) around citrate-capped NRs (NR-Cit) to form NR-PC conferred them stealth property and high hematocompatibility similar to the common strategy of PEGylating NRs, which would otherwise not be able to evade the immune system. Specifically, the NR-PC caused minimal complement activation with significantly lower formation of the terminal complement complex SC5b-9 measured in human serum containing NR-PC, and this resulted in low uptake by phagocytic U937 monocytes of 5.9% of the initial gold dose compared to 55.8% of NR-Cit. In addition, NR-PC exhibited very low hemolytic activity of less than 0.2% hemolysis with no observable effect on RBC morphology as opposed to 0.6% for NR-Cit at the same concentration of 1 nM NRs. Furthermore, we showed that the high hematocompatibility and stealth property of NR-PC were maintained even after the loading of small molecules, photosensitizer Chlorine e6 (Ce6), into the protein corona, thus further establishing the potential clinical relevance of exploiting the inevitably formed serum protein corona on nanoparticles as an effective delivery vector for small molecular therapeutics.


Assuntos
Nanopartículas Metálicas , Nanotubos , Coroa de Proteína , Ouro , Humanos , Nanopartículas Metálicas/toxicidade , Fármacos Fotossensibilizantes
7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435256

RESUMO

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA-protein crosslinking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3-segment of the product-RNA generated by backtracking extrudes through the RdRp NTP-entry tunnel, that a mismatched nucleotide at the product-RNA 3-end frays and enters the NTP-entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals. Significance StatementThe COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 genome is replicated and transcribed by its RNA-dependent RNA polymerase (RdRp), which is the target for antivirals such as remdesivir. We use a combination of approaches to show that backtracking (backwards motion of the RdRp on the template RNA) is a feature of SARS-CoV-2 replication/transcription. Backtracking may play a critical role in proofreading, a crucial process for SARS-CoV-2 resistance against many antivirals.

8.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523906

RESUMO

Understanding heat dissipation processes at nanoscale during cellular thermogenesis is essential to clarify the relationships between the heat and biological processes in cells and organisms. A key parameter determining the heat flux inside a cell is the local thermal conductivity, a factor poorly investigated both experimentally and theoretically. Here, using a nanoheater/nanothermometer hybrid made of a polydopamine encapsulating a fluorescent nanodiamond, we measured the intracellular thermal conductivities of HeLa and MCF-7 cells with a spatial resolution of about 200 nm. The mean values determined in these two cell lines are both 0.11 ± 0.04 W m-1 K-1, which is significantly smaller than that of water. Bayesian analysis of the data suggests there is a variation of the thermal conductivity within a cell. These results make the biological impact of transient temperature spikes in a cell much more feasible, and suggest that cells may use heat flux for short-distance thermal signaling.

9.
J Phys Chem B ; 125(4): 1181-1195, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476152

RESUMO

The interaction between human serum albumin (HSA) and nanoparticles (NPs) to form HSA corona has widely been studied since endogenous functions of albumin are highly attractive for drug delivery. However, a full understanding of the molecular dynamics and factors behind the formation of HSA corona, including interactions between HSA and different surface ligands and between neighboring HSA molecules, resulting in conformational change of HSA is presently lacking. Here, we assembled 14 HSA molecules around gold nanorods (AuNRs) with different surface chemistries (bare gold surface, cetyltrimethylammonium bromide (CTAB), polystyrene sulfonate (PSS), and polydiallyldimethylammonium chloride (PDADMAC)) in silico and examined the dynamics of HSA corona formation using coarse-grained molecular dynamics for 300 ns of simulation. We observed that PDADMAC, being more flexible than PSS, resulted in all HSA molecules moving toward AuNR-PDADMAC, while the instability of CTAB on AuNR resulted in fewer HSA molecules moving toward AuNR-CTAB compared to AuNR-PSS. HSA molecules around AuNR-PDADMAC also exhibited the largest conformational change in terms of their radius of gyration (Rg) and root mean square deviation (RMSD). In the absence of surface ligands, HSA molecules around the bare AuNR were susceptible to steric hindrance with conformational change observed in terms of their RMSD but not their Rg unlike that of HSA molecules around AuNR-PDADMAC. The insights gained from the inclusion of neighboring HSA molecules in the simulation of corona formation could be more representative than examining a single adsorbed HSA molecule on AuNRs with different surface passivations.


Assuntos
Ouro , Nanotubos , Simulação por Computador , Humanos , Ligantes , Albumina Sérica Humana
10.
RSC Adv ; 12(1): 319-325, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35424498

RESUMO

One of the major weaknesses of therapeutic peptides is their sensitivity to degradation by proteolytic enzymes in vivo. Gold nanoparticles (GNPs) are a good carrier for therapeutic peptides to improve their stability and cellular uptake in vitro and in vivo. We conjugated the anticancer KT2 peptide as an anticancer peptide model to PEGylated GNPs (GNPs-PEG) and investigated the peptide stability, cellular uptake and ability of the GNPs-KT2-PEG conjugates to induce MDA-MB-231 human breast cancer cell death. We found that 11 nm GNPs protected the conjugated KT2 peptide from trypsin proteolysis, keeping it stable up to 0.128% trypsin, which is higher than the serum trypsin concentration (range 0.0000285 ± 0.0000125%) reported by Lake-Bakaar, G. et al., 1979. GNPs significantly enhanced the cellular uptake of KT2 peptides after conjugation. Free KT2 peptides pretreated with trypsin were not able to kill MDA-MB-231 cells due to proteolysis, while GNPs-KT2-PEG was still able to exert effective cancer cell killing after trypsin treatment at levels comparable to GNPs-KT2-PEG without enzyme pretreatment. The outcome of this study highlights the utility of conjugated anticancer peptides on nanoparticles to improve peptide stability and retain anticancer ability.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20236919

RESUMO

BackgroundThe coronavirus disease 2019 (COVID-19) pandemic has resulted in severe shortages of personal protective equipment (PPE) necessary to protect front-line healthcare personnel. These shortages underscore the urgent need for simple, efficient, and inexpensive methods to decontaminate SARS-CoV-2-exposed PPE enabling safe reuse of masks and respirators. Efficient decontamination must be available not only in low-resourced settings, but also in well-resourced settings affected by PPE shortages. Methylene blue (MB) photochemical treatment, hitherto with many clinical applications including those used to inactivate virus in plasma, presents a novel approach for widely applicable PPE decontamination. Dry heat (DH) treatment is another potential low-cost decontamination method. MethodsMB and light (MBL) and DH treatments were used to inactivate coronavirus on respirator and mask material. We tested three N95 filtering facepiece respirators (FFRs), two medical masks (MMs), and one cloth community mask (CM). FFR/MM/CM materials were inoculated with SARS-CoV-2 (a Betacoronavirus), murine hepatitis virus (MHV) (a Betacoronavirus), or porcine respiratory coronavirus (PRCV) (an Alphacoronavirus), and treated with 10 {micro}M MB followed by 50,000 lux of broad-spectrum light or 12,500 lux of red light for 30 minutes, or with 75{degrees}C DH for 60 minutes. In parallel, we tested respirator and mask integrity using several standard methods and compared to the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method. Intact FFRs/MMs/CM were subjected to five cycles of decontamination (5CD) to assess integrity using International Standardization Organization (ISO), American Society for Testing and Materials (ASTM) International, National Institute for Occupational Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA) test methods. FindingsOverall, MBL robustly and consistently inactivated all three coronaviruses with at least a 4-log reduction. DH yielded similar results, with the exception of MHV, which was only reduced by 2-log after treatment. FFR/MM integrity was maintained for 5 cycles of MBL or DH treatment, whereas one FFR failed after 5 cycles of VHP+O3. Baseline performance for the CM was variable, but reduction of integrity was minimal. InterpretationMethylene blue with light and DH treatment decontaminated masks and respirators by inactivating three tested coronaviruses without compromising integrity through 5CD. MBL decontamination of masks is effective, low-cost and does not require specialized equipment, making it applicable in all-resource settings. These attractive features support the utilization and continued development of this novel PPE decontamination method.

12.
J Mater Chem B ; 8(47): 10812-10824, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33174587

RESUMO

Nanoparticle-based phototherapy has evolved to include immunotherapy as an effective treatment combination for cancers through inducing anti-cancer immune activation leading to downstream adaptive responses and immune protection. However, most cancer phototherapy studies that claimed anti-cancer immunogenic effects often included exogenous immunostimulants to potentiate immune responses and did not clearly establish their effects on immune cells. In this study, we showed that combined photodynamic (PDT) and photothermal therapy (PTT) using gold nanorods (NRs) loaded with the photosensitizer chlorin e6 (Ce6) on endogenously formed mouse serum (MS) protein coronas (i.e., NR-MS-Ce6) on EMT6 murine mammary carcinoma cells could potentiate the activation of both J774A.1 macrophages and DC2.4 dendritic cells. The activation of these innate immune cells by the conditioned media from cancer cells treated with combined PDT + PTT was cell-type and number dependent. While treated B16-OVA murine melanoma cells induced lower activation levels for both immune cell types compared to EMT6, they caused higher pro-inflammatory cytokine secretion levels. Our study suggests the importance of immunological investigations to complement any nanoparticle-based therapeutic interventions to better evaluate their efficacy. This could be achieved through a simple approach to screen for the first line of immune responses arising from these therapies prior to in vivo studies.


Assuntos
Ouro/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanotubos , Fármacos Fotossensibilizantes/administração & dosagem , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Terapia Combinada/métodos , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Ouro/química , Imunidade Inata/fisiologia , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Nanotubos/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Nanomedicine (Lond) ; 15(24): 2329-2344, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32945247

RESUMO

Aim: To establish a light-independent functionality of gold nanorods (AuNRs) with a human serum (HS) protein corona loaded with photosensitizer Chlorin e6 (AuNR-HS-Ce6) in M1 polarization of macrophages. Methods: RT-qPCR and ELISA were used to determine gene and protein expression, respectively. Uptake of AuNR-HS-Ce6 was determined via flow cytometry, inductively coupled plasma mass spectrometry and fluorescence microscopy. Cell viability was determined using PrestoBlue® cell viability assay. Results: An increase in M1 gene and protein expression was observed in AuNR-HS-Ce6-treated macrophages. Delivery of high Ce6 payload via AuNR-HS-Ce6 was the primary contributor toward M1 polarization. Finally, DLD-1 cells treated with conditioned media from AuNR-HS-Ce6-treated macrophages showed significantly reduced proliferation. Conclusion: Our study suggests an immunomodulatory potential of Ce6 in inducing light-independent M1 polarization outside of its role as a photosensitizer.


Assuntos
Nanotubos , Fotoquimioterapia , Porfirinas , Coroa de Proteína , Linhagem Celular Tumoral , Ouro , Humanos , Macrófagos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
14.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-194084

RESUMO

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated-transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryo-electron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template-product in complex with two molecules of the nsp13 helicase. The Nidovirus-order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12-thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapeutic development.

15.
Nanoscale ; 12(26): 14021-14036, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32579657

RESUMO

Charge and surface chemistry of gold nanorods (AuNRs) are often considered the predictive factors for cell membrane damage. Unfortunately, extensive research on AuNR passivated with polyelectrolyte (PE) ligand shell (AuNR-PE) has hitherto left a vital knowledge gap between the mechanical stability of the ligand shell and the cytotoxicity of AuNR-PEs. Here, the agreement between unbiased coarse-grained molecular dynamics (CGMD) simulation and empirical outcomes on hemolysis of red blood cells by AuNR-PEs demonstrates for the first time, a direct impact of the mechanical stability of the PE shell passivating the AuNRs on the lipid membrane rupture. Such mechanical stability is ultimately modulated by the rigidity of the PE components. The CGMD simulation results also reveal the mechanism where the PE chain adsorbs near the surface of the lipid bilayer without penetrating the hydrophobic core of the bilayer, which allows the hydrophobic AuNR core to be in direct contact with the hydrophobic interior of the lipid bilayer, thereby perforating the lipid membrane to induce membrane damage.


Assuntos
Ouro , Nanotubos , Membrana Celular , Interações Hidrofóbicas e Hidrofílicas , Polieletrólitos
16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20106724

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Approximately 20% of infected patients experience a severe manifestation of the disease, causing bilateral pneumonia and acute respiratory distress syndrome. Severe COVID-19 patients also have a pronounced coagulopathy with approximately 30% of patients experiencing thromboembolic complications. However, the etiology driving the coagulopathy remains unknown. Here, we explore whether the prominent neutrophilia seen in severe COVID-19 patients contributes to inflammation-associated coagulation. We found in severe patients the emergence of a CD16IntCD44lowCD11bInt low-density inflammatory band (LDIB) neutrophil population that trends over time with changes in disease status. These cells demonstrated spontaneous neutrophil extracellular trap (NET) formation, phagocytic capacity, enhanced cytokine production, and associated clinically with D-dimer and systemic IL-6 and TNF- levels, particularly for CD40+ LDIBs. We conclude that the LDIB subset contributes to COVID-19-associated coagulopathy (CAC) and could be used as an adjunct clinical marker to monitor disease status and progression. Identifying patients who are trending towards LDIB crisis and implementing early, appropriate treatment could improve all-cause mortality rates for severe COVID-19 patients. One Sentence SummaryIn this study, we discover that low-density neutrophils significantly contribute to COVID-19-associated coagulopathy and inflammation

17.
ACS Infect Dis ; 6(5): 947-953, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32191032

RESUMO

The emergence and rapid spread of antibiotic resistance poses a serious threat to healthcare systems across the globe. The existence of carbapenemase-producing Enterobacteriaceae (CPE) such as Klebsiella pneumoniae renders the use of carbapenems, the last-resort class of ß-lactam antibiotics, ineffective against bacterial infections, often leading to CPE-associated mortalities. Current methods of detection such as the Carba NP test and modified Hodge's test require hours to days to detect, which delays the response to isolate patients for rapid intervention. Here, we developed a surface-enhanced Raman scattering (SERS)-based detection scheme which utilizes gold nanostars conjugated to a ß-lactam antibiotic ceftriaxone (CRO) as a beacon for rapid detection of bacterial ß-lactamase secreted by Delhi metalloproteinase (NDM)-producing Escherichia coli as our CPE model with carbapenemase activity. The cleavage of ß-lactam ring in CRO by NDM (Class B ß-lactamase) caused a detectable reduction in SERS intensities at 722, 1358, and 1495 cm-1 within 25 min. Ratiometric analysis of the SERS peaks at 722, 1358, and 1495 cm-1 normalized against the Raman peak of polystyrene cuvette at 620 cm-1 showed the peak at 1358 cm-1 having the most significant change in intensity upon CPE detection. This reduced detection time has not been reported to date for CPE detection, and our novel approach using SERS could be extended to detect the activity of other classes of ß-lactamases to broaden its clinical utility.


Assuntos
Proteínas de Bactérias , Enterobacteriaceae/isolamento & purificação , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , beta-Lactamases , Ceftriaxona , Enterobacteriaceae/enzimologia
18.
Langmuir ; 36(1): 388-396, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826617

RESUMO

Serum albumin could potentially be exploited to form a protein corona on gold nanorods (AuNRs) for drug delivery because of its endogenous functionality as a small molecule carrier. However, the cetyltrimethylammonium bromide (CTAB) surfactant, which is a synthesis byproduct passivating AuNRs to confer colloidal stability, could also cause its conformational change upon interaction with serum albumin during the process of corona formation, thus altering its biological functions. Unfortunately, a clear understanding of how exactly human serum albumin (HSA) would change its conformation as it interacts with AuNR-CTAB is presently lacking. Here, we made use of coarse-grain molecular dynamics (CGMD) simulation to elucidate the interaction between HSA and AuNR-CTAB leading to its widely reported conformational change. We showed that HSA could sequester CTAB from the surface of AuNRs and form HSA-CTAB complexes, which could also interact with other adjacent complexes through "cross-linking" by the clusters of CTAB. Such a HSA-CTAB complex resulted in the observed conformational change of HSA, which we verified empirically with an esterase activity assay and by analyzing the root-mean-square-deviation of the HSA molecules from CGMD. The conformational change of HSA was not observed in AuNRs passivated with other negatively or positively charged surface ligands such as polystyrene sulfonate and polydiallyldimethylammonium chloride. Therefore, our study revealed that the conformational change experienced by HSA may not necessarily be attributed to protein unfolding on the surface of the AuNR due to charge interactions but rather to the instability of the surface ligands on the AuNRs which allows them to be sequestered by HSA to form HSA-CTAB complexes.


Assuntos
Cetrimônio/química , Ouro/química , Nanotubos/química , Albumina Sérica Humana/química , Humanos , Modelos Moleculares , Conformação Molecular
19.
Analyst ; 144(18): 5486-5496, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31386701

RESUMO

Traditional virus detection methods require ligands that bind to either viral capsid proteins or viral nucleic acids. Ligands are typically antibodies or oligonucleotides and they are expensive, have limited chemical stability, and can only detect one specific type of virus at a time. Here, the biochemical surface properties of viruses are exploited for ligand-free, nonspecific virus detection. It has been found that the osmolyte mannitol can preferentially aggregate virus, while leaving proteins in solution. This led to the development of a ligand-free detection of virus using gold nanoparticle (AuNP) aggregation. Porcine parvovirus (PPV) was incubated with AuNPs and aggregation of the PPV-AuNP complex with mannitol was detected by dynamic light scattering (DLS). The lowest detectable concentration of PPV was estimated to be 106 MTT50 per mL, which is lower than standard antibody assays. PPV was also detected when swabbed from a dry surface and in the presence of a protein solution matrix. The enveloped bovine viral diarrhea virus (BVDV) was also detected using mannitol-induced aggregation of BVDV-coated AuNPs. The lowest detectable concentration of BVDV was estimated to be 104 MTT50 per mL. This demonstrates that gold nanoparticle aggregation can detect virus without the use of specific ligands.


Assuntos
Ouro/química , Manitol/química , Nanopartículas Metálicas/química , Vírion/isolamento & purificação , Vírus da Diarreia Viral Bovina/isolamento & purificação , Limite de Detecção , Parvovirus Suíno/isolamento & purificação , Propriedades de Superfície
20.
J Control Release ; 300: 161-173, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-30853526

RESUMO

Urine voiding and the presence of a mucus layer on the apical surface of the urothelium are two major challenges towards an effective intravesical drug delivery for bladder malignancies. Improved bioavailability to the underlying bladder tissue could be achieved with delivery vectors that diffuse efficiently through the bladder mucus. Pegylation of delivery vectors remains the existing "gold standard" to enhance mucosal delivery despite known poor cell uptake and reported PEG sensitivity. Here, we showed improved mucopenetration of carboxylated polystyrene (PS) nanoparticles (NPs) passivated with a polydopamine (PDA) surface, at similar level as PEG. While the diffusion of PS NPs in mucus was retarded by ~1000-fold, PS-PDA diffused only 6-fold slower in mucus than water. This enabled faster and deeper penetration of PS-PDA into porcine bladder tissue beneath the mucus layer. The same PDA surface also conferred biocompatibility and enabled photothermal therapy (PTT) with significant surface disruption on an ex vivo porcine bladder model upon localized laser irradiation, which was not possible with PEG. Our outcomes suggested the facile and versatile PDA surface passivation of nanoparticles as an enabler for dual purposes of enhancing mucopenetration and allowing photothermal therapy on bladder tissue, which has not been demonstrated to date.


Assuntos
Sistemas de Liberação de Medicamentos , Indóis/administração & dosagem , Muco/metabolismo , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Poliestirenos/administração & dosagem , Bexiga Urinária/metabolismo , Animais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...