Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261297

RESUMO

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated at this site in response to intramuscular COVID-19 vaccination, and whether these Ab protect against subsequent "breakthrough" infections. We collected longitudinal serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines over a 6-month period and measured the relative level of anti-Spike and anti-Receptor Binding Domain (RBD) Ab. We detected anti-Spike/RBD IgG and IgA and associated secretory component in the saliva of most participants receiving 1 dose of mRNA vaccine. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited greatly diminished anti-Spike/RBD IgG and IgA levels concomitant with a reduction in neutralizing activity in the saliva, although the level of secretory component associated anti-Spike was less susceptible to decay. Examining two prospective cohorts of subjects that were monitored for infections post-vaccination, we found that participants who were subsequently infected with SARS-CoV-2 had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data emphasize the importance of developing COVID-19 vaccines that elicit a durable IgA response. One-Sentence SummaryOur study delves into whether intra-muscular mRNA vaccination regimes confer a local IgA response in the oral cavity and whether the IgA response is associated with protection against breakthrough infection.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-362848

RESUMO

Neutralizing antibodies (nAbs) hold promise as effective therapeutics against COVID-19. Here, we describe protein engineering and modular design principles that have led to the development of synthetic bivalent and tetravalent nAbs against SARS-CoV-2. The best nAb targets the host receptor binding site of the viral S-protein and its tetravalent versions can block entry with a potency that exceeds the bivalent nAbs by an order of magnitude. Structural studies show that both the bivalent and tetravalent nAbs can make multivalent interactions with a single S-protein trimer, observations consistent with the avidity and potency of these molecules. Significantly, we show that the tetravalent nAbs show much increased tolerance to potential virus escape mutants. Bivalent and tetravalent nAbs can be produced at large-scale and are as stable and specific as approved antibody drugs. Our results provide a general framework for developing potent antiviral therapies against COVID-19 and related viral threats, and our strategy can be readily applied to any antibody drug currently in development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...