Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Electron. j. biotechnol ; 17(3): 137-147, May 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-719104

RESUMO

Background ADP-glucose pyrophosphorylase (AGPase) is a rate-limiting enzyme catalyzing the first step in the starch biosynthesis pathway in higher plants. To date, there are no reported variants or isoforms of the AGPase enzyme in bananas (Musa spp. family Musaceae) as is the case of other plants. In this study, genomic DNA sequences homologous to the gene encoding one of the large subunits of the enzyme were amplified from 10 accessions of the genus Musa, including representatives of wild ancestors (AA and BB genomes), dessert bananas (AA, AAA, AB and AAB genomes), plantains (AAB genome) and cooking bananas (ABB and AAA genomes), and studied in order to find single nucleotide polymorphisms (SNP) base variations in Musa accessions. Results In the 810-base pair amplicons of the AGPase large sub-unit (LSU) gene analyzed in ten Musa accessions, a total of 36 SNPs and insertions/deletions (indels) were found. The phylogenetic analysis revealed fifteen distinct haplotypes, which were grouped into four variants. Deep examination of SNPs in the 2nd exon in the LSU of AGPase showed that at seven locations, five SNPs altered their amino acid sequence. Conclusions This work reveals the possible number of AGPase enzyme isoforms and their molecular levels in banana. Molecular markers could be designed from SNPs present in these banana accessions. This information could be useful for the development of SNP-based molecular markers for Musa germplasm, and alteration of the allosteric properties of AGPase to increase the starch content and manipulate the starch quality of banana fruits.


Assuntos
Amido/metabolismo , Polimorfismo de Nucleotídeo Único , Glucose-1-Fosfato Adenililtransferase/genética , Filogenia , Variação Genética , Haplótipos , Marcadores Genéticos , Reação em Cadeia da Polimerase , Clonagem Molecular , Musa , Genótipo
2.
Plant Physiol Biochem ; 49(6): 572-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21388818

RESUMO

The hemibiotrophic filamentous fungus Mycosphaerella fijiensis causes the banana foliar disease known as black Sigatoka, responsible for major worldwide losses in the banana fruit industry. In this work the in vitro secretome of M. fijiensis was characterized. Native and denaturant polyacrylamide gel protease assays showed the M. fijiensis secretome contains protease activity capable of degrading gelatin. Necrotic lesions on leaves were produced by application of the in vitro secretome to the surface of one black Sigatoka-resistant banana wild species, one susceptible cultivar and the non-host plant Carica papaya. To distinguish if necrosis by the secretome is produced by phytotoxins or proteins, the latter ones were precipitated with ammonium sulfate and applied in native or denatured forms onto leaves of the same three plant species. Proteins applied in both preparations were able to produce necrotic lesions. Application of Pronase, a commercial bacterial protease suggested that the necrosis was, at least in part, caused by protease activity from the M. fijiensis secretome. The ability to cause necrotic lesions between M. fijiensis secreted- and ammonium sulfate-precipitated proteins, and purified lipophilic or hydrophilic phytotoxins, was compared. The results suggested that leaf necrosis arises from the combined action of non-host specific hydrolytic activities from the secreted proteins and the action of phytotoxins. This is the first characterization of the M. fijiensis protein secretome produced in vitro but, more importantly, it is also the first time the M. fijiensis secretome has been shown to contain virulence factors capable of causing necrosis to its natural host.


Assuntos
Ascomicetos/patogenicidade , Morte Celular/efeitos dos fármacos , Endopeptidases/farmacologia , Proteínas Fúngicas/farmacologia , Musa/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Carica/efeitos dos fármacos , Carica/microbiologia , Interações Hospedeiro-Patógeno , Hidrólise , Musa/classificação , Musa/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Especificidade da Espécie , Fatores de Virulência/farmacologia
3.
Curr Genet ; 53(5): 299-311, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18365202

RESUMO

A genetic linkage map of the fungal plant pathogen Mycosphaerella fijiensis, causal agent of black leaf streak disease of banana was developed. A cross between the isolates CIRAD86 (from Cameroon) and CIRAD139A (from Colombia) was analyzed using molecular markers and the MAT locus. The genetic linkage map consists of 298 AFLP and 16 SSR markers with 23 linkage groups, containing five or more markers, covering 1,879 cM. Markers are separated on average by around 5.9 cM. The MAT locus was shown to segregate in a 1:1 ratio but could not be successfully mapped. An estimate of the relation between physical size and genetic distance was approximately 39.0 kb/cM. The estimated total haploid genome size was calculated using the genetic mapping data at 4,298.2 cM. This is the first genetic linkage map reported for this important foliar pathogen of banana. The great utility of the map will be for anchoring contigs in the genome sequence, evolutionary studies in comparison with other fungi, to identify quantitative trait loci (QTLs) associated with aggressiveness or oxidative stress resistance and with the recently available genome sequence, for positional cloning.


Assuntos
Ascomicetos/genética , Mapeamento Cromossômico , Ligação Genética , Genoma Fúngico , Musa/parasitologia , Doenças das Plantas/parasitologia , Ascomicetos/patogenicidade , Sequência de Bases , Mapeamento Cromossômico/métodos , Haplótipos , Folhas de Planta/parasitologia , Polimorfismo Genético , Análise de Sequência de DNA/métodos
4.
Mol Biotechnol ; 36(1): 64-70, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17827540

RESUMO

A bacterial artificial chromosome library of the causal agent of the Black Sigatoka leaf spot disease of banana and plantain, Mycosphaerella fijiensis, has been constructed using a non-sphaeroplasting technique and characterized using both homologous and heterologous probes. After first and a second size selection of PFGE-fractionated DNA, a ligation was obtained using a 1:4 molar ratio (insert:vector). One hundred random clones were analyzed, and the mean insert size was estimated to be 90 kb. The range of the insert sizes was between 40 and 160 kb. The highest percentage of inserts belonged to the range between 80 and 100 kb; 32% of the inserts had 2 or 3 internal NotI sites. This library consists of 1920 clones, if the genomic size is at least 35 Mb, then this represents 4.9 x genome equivalents, which was supported by hybridization results with homologous and heterologous probes.


Assuntos
Ascomicetos/genética , Cromossomos Artificiais Bacterianos/genética , Musa/microbiologia , Doenças das Plantas/microbiologia , Plantago/microbiologia , Células Clonais , Clonagem Molecular , Sondas de DNA , Eletroforese em Gel de Campo Pulsado , Hibridização de Ácido Nucleico
5.
Mol Genet Genomics ; 278(4): 443-53, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17587056

RESUMO

The tomato Pto gene encodes a serine/threonine kinase (STK) whose molecular characterization has provided valuable insights into the disease resistance mechanism of tomato and it is considered as a promising candidate for engineering broad-spectrum pathogen resistance in this crop. In this study, a pair of degenerate primers based on conserved subdomains of plant STKs similar to the tomato Pto protein was used to amplify similar sequences in banana. A fragment of approximately 550 bp was amplified, cloned and sequenced. The sequence analysis of several clones revealed 13 distinct sequences highly similar to STKs. Based on their significant similarity with the tomato Pto protein (BLASTX E value <3e-53), seven of them were classified as Pto resistance gene candidates (Pto-RGCs). Multiple sequence alignment of the banana Pto-RGC products revealed that these sequences contain several conserved subdomains present in most STKs and also several conserved residues that are crucial for Pto function. Moreover, the phylogenetic analysis showed that the banana Pto-RGCs were clustered with Pto suggesting a common evolutionary origin with this R gene. The Pto-RGCs isolated in this study represent a valuable sequence resource that could assist in the development of disease resistance in banana.


Assuntos
Evolução Molecular , Imunidade Inata/genética , Musa/genética , Filogenia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência , Sequência de Aminoácidos , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas Serina-Treonina Quinases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...