Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(7): 1451-1453, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986439

RESUMO

Skin inflammation is potentiated by coordinated epithelial and immune cell metabolism. In this issue of Immunity, Subudhi and Konieczny et al. delineate how HIF1α regulates epithelial cell glycolysis during psoriasis. In turn, lactate is a byproduct that augments type 17 γδ T cell responses to sustain inflammatory skin disease.


Assuntos
Células Epiteliais , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Psoríase , Pele , Animais , Humanos , Doença Crônica , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Psoríase/imunologia , Psoríase/metabolismo , Pele/imunologia , Pele/patologia , Pele/metabolismo
2.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38645150

RESUMO

Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds and psoriasis. Normally skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes. One of the genes modulated in epidermal γδ T cells during obesity and type 2 diabetes is CCR6, which is the receptor for CCL20. CCL20 is elevated in the skin during obesity and type 2 diabetes. Here we identify a subset of murine epidermal γδ T cells that expresses CCR6 in response to activation in vitro and post-wounding or psoriasis induction with imiquimod in vivo. We show that CCL20 stimulates epidermal γδ T cells to produce IL-17 suggesting CCR6 regulates the IL-17 axis as in dermal γδ T cells. Further, epidermal γδ T cells upregulate CCR6 and produce IL-17 during murine models of wound repair and psoriasis. Obesity increases CCR6 and IL-17 expression by epidermal γδ T cells during wound repair but has less of an effect during psoriasis. These findings have novel implications for the regulation of a specific population of IL-17-producing epidermal γδ T cells during skin damage and inflammation.

3.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986907

RESUMO

Hematophagous ectoparasites, such as ticks, rely on impaired wound healing for skin attachment and blood feeding. Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to arthropod-borne diseases. Here, we used orthogonal approaches combining single-cell RNA sequencing (scRNAseq), flow cytometry, murine genetics, and intravital microscopy to demonstrate how tick extracellular vesicles (EVs) disrupt networks involved in tissue repair. Impairment of EVs through silencing of the SNARE protein vamp33 negatively impacted ectoparasite feeding and survival in three medically relevant tick species, including Ixodes scapularis. Furthermore, I. scapularis EVs affected epidermal γδ T cell frequencies and co-receptor expression, which are essential for keratinocyte function. ScRNAseq analysis of the skin epidermis in wildtype animals exposed to vamp33-deficient ticks revealed a unique cluster of keratinocytes with an overrepresentation of pathways connected to wound healing. This biological circuit was further implicated in arthropod fitness when tick EVs inhibited epithelial proliferation through the disruption of phosphoinositide 3-kinase activity and keratinocyte growth factor levels. Collectively, we uncovered a tick-targeted impairment of tissue repair via the resident γδ T cell-keratinocyte axis, which contributes to ectoparasite feeding.

4.
J Immunol ; 211(9): 1266-1275, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844280

RESUMO

Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.


Assuntos
Pele , Cicatrização , Epiderme , Subpopulações de Linfócitos T , Homeostase
5.
BME Front ; 2022: 9854084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850183

RESUMO

Objective. We aim to develop a machine learning algorithm to quantify adipose tissue deposition at surgical sites as a function of biomaterial implantation. Impact Statement. To our knowledge, this study is the first investigation to apply convolutional neural network (CNN) models to identify and segment adipose tissue in histological images from silk fibroin biomaterial implants. Introduction. When designing biomaterials for the treatment of various soft tissue injuries and diseases, one must consider the extent of adipose tissue deposition. In this work, we analyzed adipose tissue accumulation in histological images of sectioned silk fibroin-based biomaterials excised from rodents following subcutaneous implantation for 1, 2, 4, or 8 weeks. Current strategies for quantifying adipose tissue after biomaterial implantation are often tedious and prone to human bias during analysis. Methods. We used CNN models with novel spatial histogram layer(s) that can more accurately identify and segment regions of adipose tissue in hematoxylin and eosin (H&E) and Masson's trichrome stained images, allowing for determination of the optimal biomaterial formulation. We compared the method, Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA), to the baseline UNET model and an extension of the baseline model, attention UNET, as well as to versions of the models with a supplemental attention-inspired mechanism (JOSHUA+ and UNET+). Results. The inclusion of histogram layer(s) in our models shows improved performance through qualitative and quantitative evaluation. Conclusion. Our results demonstrate that the proposed methods, JOSHUA and JOSHUA+, are highly beneficial for adipose tissue identification and localization. The new histological dataset and code used in our experiments are publicly available.

6.
Bioengineering (Basel) ; 8(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34821727

RESUMO

Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.

7.
Immunohorizons ; 5(6): 448-465, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398803

RESUMO

Identifying the "essential" components of an undergraduate immunology lecture course can be daunting because of the varying postgraduate pathways students take. The American Association of Immunologists Education Committee commissioned an Ad Hoc Committee, representing undergraduate, graduate, and medical institutions as well as the biotechnology community, to develop core curricular recommendations for teaching immunology to undergraduates. In a reiterative process involving the American Association of Immunologists teaching community, 14 key topics were identified and expanded to include foundational concepts, subtopics and examples, and advanced subtopics, providing a flexible list for curriculum development and avenues for higher-level learning. Recommendations for inclusive and antiracist teaching that outline opportunities to meet the needs of diverse student populations were also developed. The consensus recommendations can be used to accommodate various course settings and will bridge undergraduate and graduate teaching and prepare diverse students for subsequent careers in the biomedical field.


Assuntos
Alergia e Imunologia/educação , Currículo/normas , Sociedades Médicas/normas , Alergia e Imunologia/organização & administração , Alergia e Imunologia/normas , Humanos , Estudantes , Ensino/normas , Estados Unidos
8.
Front Bioeng Biotechnol ; 9: 664306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295878

RESUMO

Sponge-like biomaterials formed from silk fibroin are promising as degradable materials in clinical applications due to their controllable breakdown into simple amino acids or small peptides in vivo. Silk fibroin, isolated from Bombyx mori silkworm cocoons, can be used to form sponge-like materials with a variety of tunable parameters including the elastic modulus, porosity and pore size, and level of nanocrystalline domains. These parameters can be independently tuned during formulation resulting in a wide parameter space and set of final materials. Determining the mechanism and rate constants for biomaterial degradation of these tunable silk materials would allow scientists to evaluate and predict the biomaterial performance for the large array of tissue engineering applications and patient ailments a priori. We first measured in vitro degradation rates of silk sponges using common protein-degrading enzymes such as Proteinase K and Protease XIV. The concentration of the enzyme in solution was varied (1, 0.1, 0.01 U/mL) along with one silk sponge formulation parameter: the level of crystallinity within the sponge. Additionally, two experimental degradation methods were evaluated, termed continuous and discrete degradation methods. Silk concentration, polymer chain length and scaffold pore size were held constant during experimentation and kinetic parameter estimation. Experimentally, we observed that the enzyme itself, enzyme concentration within the bulk solution, and the sponge fabrication water annealing time were the major experimental parameters dictating silk sponge degradation in our experimental design. We fit the experimental data to two models, a Michaelis-Menten kinetic model and a modified first order kinetic model. Weighted, non-linear least squares analysis was used to determine the parameters from the data sets and Monte-Carlo simulations were utilized to obtain estimates of the error. We found that modified first order reaction kinetics fit the time-dependent degradation of lyophilized silk sponges and we obtained first order-like rate constants. These results represent the first investigations into determining kinetic parameters to predict lyophilized silk sponge degradation rates and can be a tool for future mathematical representations of silk biomaterial degradation.

9.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291435

RESUMO

The skin is a critical barrier that protects against damage and infection. Within the epidermis and dermis reside γδ T cells that play a variety of key roles in wound healing and tissue homeostasis. Skin-resident γδ T cells require T cell receptor (TCR) ligation, costimulation, and cytokine reception to mediate keratinocyte activity and inflammatory responses at the wound site for proper wound repair. While both epidermal and dermal γδ T cells regulate inflammatory responses in wound healing, the timing and factors produced are distinct. In the absence of growth factors, cytokines, and chemokines produced by γδ T cells, wound repair is negatively impacted. This disruption in γδ T cell function is apparent in metabolic diseases such as obesity and type 2 diabetes. This review provides the current state of knowledge on skin γδ T cell activation, regulation, and function in skin homeostasis and repair in mice and humans. As we uncover more about the complex roles played by γδ T cells in wound healing, novel targets can be discovered for future clinical therapies.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Pele/imunologia , Pele/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Cicatrização , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Dermatite/etiologia , Dermatite/metabolismo , Dermatite/patologia , Diabetes Mellitus Tipo 2/complicações , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Regulação da Expressão Gênica , Humanos , Imunomodulação , Queratinócitos/metabolismo , Ativação Linfocitária/imunologia , Pele/lesões , Pele/patologia
11.
J Immunol ; 203(12): 3427-3435, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712385

RESUMO

Obesity impacts over 30% of the United States population, resulting in a wide array of complications. Included among these is the deterioration of the intestinal barrier, which has been implicated in type 2 diabetes and susceptibility to bacterial transepithelial migration. The intestinal epithelium is maintained by αß and γδ intraepithelial T lymphocytes, which migrate along the epithelia, support epithelial homeostasis, and protect from infection. In this study, we investigate how obesity impacts intraepithelial lymphocyte (IEL) persistence and function in intestinal homeostasis and repair. Mice were fed a high-fat diet to induce obesity and to study immunomodulation in the intestine. There is a striking reduction in αß and γδ IEL persistence as obesity progresses with a different mechanism in αß versus γδ IEL populations. CD4+ and CD4+CD8+ αß intraepithelial T lymphocytes exhibit reduced homeostatic proliferation in obesity, whereas both αß and γδ IELs downregulate CD103 and CCR9. The reduction in intraepithelial T lymphocytes occurs within 7 wk of high-fat diet administration and is not dependent on chronic inflammation via TNF-α. Young mice administered a high-fat diet upon weaning exhibit the most dramatic phenotype, showing that childhood obesity has consequences on intestinal IEL seeding. Together, this dysfunction in the intestinal epithelium renders obese mice more susceptible to dextran sulfate sodium-induced colitis. Diet-induced weight loss restores IEL number and CD103/CCR9 expression and improves outcome in colitis. Together, these data confirm that obesity has immunomodulatory consequences in intestinal tissues that can be improved with weight loss.


Assuntos
Colite/etiologia , Colite/metabolismo , Imunomodulação , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Fatores Etários , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Dieta Hiperlipídica , Modelos Animais de Doenças , Imunofluorescência , Regulação da Expressão Gênica , Imuno-Histoquímica , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Masculino , Camundongos , Obesidade/complicações , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Baço/imunologia , Baço/metabolismo , Timo/imunologia , Timo/metabolismo
12.
Curr Protoc Immunol ; 127(1): e92, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31763791

RESUMO

Skin-resident and infiltrating γδ T lymphocytes are components of the cutaneous immune system that provide the first line of defense against pathogens and the environment. Research that employs the isolation and culture of T cells from murine and human skin can help delineate the molecular and cellular mechanisms utilized by T lymphocytes in skin-specific immunity. However, obtaining high numbers of T cells from epithelial tissue without resorting to long-term culture or transformation can be difficult. Here, specific approaches are described for the isolation and culture of γδ T lymphocytes from murine skin and human skin explant cultures. In addition, a protocol to assess the morphology and activation of epidermal γδ T cells in situ using immunofluorescent microscopy is detailed. These techniques can be used to analyze resident and infiltrating γδ T lymphocytes in the skin via flow cytometry, RNA-seq, or proteomics to further study inflammatory diseases, cancer, or autoimmunity. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Isolation, culture, and analysis of γδ T cells from murine epidermis Basic Protocol 2: Examination of γδ T cells in epidermal sheets to assess activation and morphology Basic Protocol 3: Preparation of human skin explant cultures for analysis of skin T cells Support Protocol 1: Counting live cells with hemocytometer Support Protocol 2: Preparing a Matrigel.


Assuntos
Separação Celular , Pele/citologia , Linfócitos T/citologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Linfócitos T/imunologia
13.
J Exp Med ; 215(12): 2962-2963, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30463878

RESUMO

In this issue of JEM, Sandrock et al. (https://doi.org/10.1084/jem.20181439) compare the origin of IL-17-producing γδ T cells (Tγδ17) with other γδ T cell populations and demonstrate the role Tγδ17 cells play in skin pathology. Using two genetically modified mouse models, one with inducible γδ T cell-specific labeling and the other with conditional γδ T cell depletion, the authors find that Tγδ17 are mostly long-lived lymphocytes and that depleting γδ T cells protects mice from psoriasis.


Assuntos
Psoríase , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Interleucina-17 , Camundongos , Modelos Genéticos , Linfócitos T
14.
Front Immunol ; 9: 1304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928283

RESUMO

γδ T lymphocytes maintain skin homeostasis by balancing keratinocyte differentiation and proliferation with the destruction of infected or malignant cells. An imbalance in skin-resident T cell function can aggravate skin-related autoimmune diseases, impede tumor eradication, or disrupt proper wound healing. Much of the published work on human skin T cells attributes T cell function in the skin to αß T cells, while γδ T cells are an often overlooked participant. This review details the roles played by both αß and γδ T cells in healthy human skin and then focuses on their roles in skin diseases, such as psoriasis and alopecia areata. Understanding the contribution of skin-resident and skin-infiltrating T cell populations and cross-talk with other immune cells is leading to the development of novel therapeutics for patients. However, there is still much to be learned in order to effectively modulate T cell function and maintain healthy skin homeostasis.

15.
Transplant Direct ; 3(4): e147, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28405603

RESUMO

BACKGROUND: Mammalian target of rapamycin (mTOR) inhibitors are approved to prevent allograft rejection and control malignancy. Unfortunately, they are associated with adverse effects, such as wound healing complications that detract from more extensive use. There is a lack of prospective wound healing studies to monitor patients treated with mTOR inhibitors, such as everolimus or sirolimus, especially in nondiabetics. METHODS: Patients receiving everolimus with standard immunosuppressant therapy or standard immunosuppressant therapy without everolimus were administered 3-mm skin biopsy punch wounds in the left scapular region. Homeostatic gene expression was examined in the skin obtained from the biopsy and wound surface area was examined on day 7. Peripheral blood mononuclear cells were examined for cytokine production. RESULTS: There are no significant changes in autophagy related 13, epidermal growth factor, insulin-like growth factor binding protein 3, IL-2, kruppel-like factor 4, and TGFB1 gene expression in the skin suggesting that there is little impact of everolimus on these genes within nonwounded skin. Peripheral blood T cells are more sensitive to cell death in everolimus-treated patients, but they retain the ability to produce proinflammatory cytokines required for efficient wound repair. Importantly, there is no delay in the closure of biopsy wounds in patients receiving everolimus as compared to those not receiving mTOR inhibition. CONCLUSIONS: Everolimus treatment is not associated with impaired closure of skin biopsy wounds in kidney transplant recipients. These data highlight the importance of exploring whether larger surgical wounds would show a similar result and how other factors, such as diabetes, impact wound healing complications associated with mTOR suppression.

16.
Front Immunol ; 7: 210, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303404

RESUMO

The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programed to mobilize the host innate and adaptive immune responses. Included among these immune cells are gamma delta T lymphocytes (γδ T cells) that are unique in their T cell receptor usage, location, and functions in the body. Stress reception by γδ T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces γδ T cell activation. Once activated, γδ T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon γδ T cell activation. Pathogenesis of many chronic inflammatory diseases involves γδ T cells; some of which are exacerbated by their presence, while others are improved. γδ T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial γδ T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts γδ T cell function. Future studies will be important to understand how this balance is achieved.

17.
PLoS One ; 10(4): e0122195, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837594

RESUMO

The development of intestinal permeability and the penetration of microbial products are key factors associated with the onset of metabolic disease. However, the mechanisms underlying this remain unclear. Here we show that, unlike liver or adipose tissue, high fat diet (HFD)/obesity in mice does not cause monocyte/macrophage infiltration into the intestine or pro-inflammatory changes in gene expression. Rather HFD causes depletion of intestinal eosinophils associated with the onset of intestinal permeability. Intestinal eosinophil numbers were restored by returning HFD fed mice to normal chow and were unchanged in leptin-deficient (Ob/Ob) mice, indicating that eosinophil depletion is caused specifically by a high fat diet and not obesity per se. Analysis of different aspects of intestinal permeability in HFD fed and Ob/Ob mice shows an association between eosinophil depletion and ileal paracelullar permeability, as well as leakage of albumin into the feces, but not overall permeability to FITC dextran. These findings provide the first evidence that a high fat diet causes intestinal eosinophil depletion, rather than inflammation, which may contribute to defective barrier integrity and the onset of metabolic disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Eosinófilos/patologia , Intestinos/patologia , Animais , Eosinófilos/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Permeabilidade
18.
PLoS One ; 10(3): e0120918, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785862

RESUMO

Obese patients are susceptible to increased morbidity and mortality associated with infectious diseases such as influenza A virus. γδ T cells and memory αß T cells play key roles in reducing viral load by rapidly producing IFN-γ and lysing infected cells. In this article we analyze the impact of obesity on T lymphocyte antiviral immunity. Obese donors exhibit a reduction in γδ T cells in the peripheral blood. The severity of obesity negatively correlates with the number of γδ T cells. The remaining γδ T cells have a skewed maturation similar to that observed in aged populations. This skewed γδ T cell population exhibits a blunted antiviral IFN-γ response. Full γδ T cell function can be restored by potent stimulation with 1-Hydroxy-2-methyl-buten-4yl 4-diphosphate (HDMAPP), suggesting that γδ T cells retain the ability to produce IFN-γ. Additionally, γδ T cells from obese donors have reduced levels of IL-2Rα. IL-2 is able to restore γδ T cell antiviral cytokine production, which suggests that γδ T cells lack key T cell specific growth factor signals. These studies make the novel finding that the γδ T cell antiviral immune response to influenza is compromised by obesity. This has important implications for the development of therapeutic strategies to improve vaccination and antiviral responses in obese patients.


Assuntos
Homeostase/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Obesidade/imunologia , Obesidade/fisiopatologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Adulto , Idoso , Células Apresentadoras de Antígenos/imunologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Obesidade/virologia , Linfócitos T/metabolismo , Adulto Jovem
19.
Cell Immunol ; 296(1): 3-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25468804

RESUMO

The international γδ T cell conference takes place every 2 years. After being held in Denver (USA) in 2004, La Jolla (USA) in 2006, Marseille (France) in 2008, Kiel (Germany) in 2010 and Freiburg (Germany) in 2012, the γδ T cell community gathered this time in Chicago (USA). This conference was organized by Zheng Chen from 16 to 18 May 2014 at his home institution, the University of Illinois College of Medicine, and boasted 180 attendants from all over the world and almost 100 submitted abstracts.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Autoimunidade/imunologia , Humanos , Neoplasias/imunologia , Cicatrização/imunologia
20.
Nat Rev Nephrol ; 8(12): 700-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23147756

RESUMO

The world population is rapidly growing and ageing at a pace that is projected to continue for at least three decades. This shift towards an older populace has invariably increased the number of individuals with diseases related to ageing, such as chronic kidney disease. The increase in chronic kidney disease is associated with a growing number of elderly patients receiving kidney transplants. Understanding how the immune system changes with increasing age will help to define the risks of rejection and infection in the elderly population and will focus attention on the need for individualized immunosuppression for patients in this age group. This Review addresses what is currently known about ageing and the immune system, highlighting age-related changes that affect the outcome of transplantation in elderly individuals. The need for new strategies to improve outcomes in this growing population of elderly renal transplant recipients is also emphasized.


Assuntos
Envelhecimento/imunologia , Rejeição de Enxerto/imunologia , Sistema Imunitário/imunologia , Transplante de Rim/imunologia , Insuficiência Renal Crônica/imunologia , Idoso , Rejeição de Enxerto/epidemiologia , Humanos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/cirurgia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA