Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(12): e202400235, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38642076

RESUMO

The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Fenilalanina , Humanos , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/química , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/síntese química , Simulação de Acoplamento Molecular , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Domínio Catalítico , Estrutura Molecular
2.
Bioorg Med Chem ; 97: 117559, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109811

RESUMO

Bacterial resistance is undoubtedly one of the main public health concerns especially with the emergence of metallo-ß-lactamases (MBLs) able to hydrolytically inactivate ß-lactam antibiotics. Currently, there are no inhibitors of MBLs in clinical use to rescue antibiotic action and the New Delhi metallo-ß-lactamase-1 (NDM-1) is still considered as one of the most relevant targets for inhibitor development. Following a fragment-based strategy to find new NDM-1 inhibitors, we identified aurone as a promising scaffold. A series of 60 derivatives were then evaluated and two of them were identified as promising inhibitors with Ki values as low as 1.7 and 2.5 µM. Moreover, these two most active compounds were able to potentiate meropenem in in vitro antimicrobial susceptibility assays. The molecular modelling provided insights about their likely interactions with the active site of NDM-1, thus enabling further improvement in the structure of this new inhibitor family.


Assuntos
Benzofuranos , Inibidores de beta-Lactamases , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Testes de Sensibilidade Microbiana
3.
Chemistry ; 29(47): e202301351, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37310888

RESUMO

The immobilization of copper-containing nitrite reductase (NiR) from Alcaligenes faecalis on functionalised multi-walled carbon nanotube (MWCNT) electrodes is reported. It is demonstrated that this immobilization is mainly driven by hydrophobic interactions, promoted by the modification of MWCNTs with adamantyl groups. Direct electrochemistry shows high bioelectrochemical reduction of nitrite at the redox potential of NiR with high current density of 1.41 mA cm-2 . Furthermore, the desymmetrization of the trimer upon immobilization induces an independent electrocatalytic behavior for each of the three enzyme subunits, corroborated by an electron-tunneling distance dependence.

4.
Eur J Med Chem ; 248: 115090, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634457

RESUMO

In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine). The HOPNO-MeOH (3) and the racemic amino acid HOPNO-AA compounds (11) were tested on purified tyrosinases from different sources (fungal, bacterial and human) for comparison purposes. Both compounds have more potent inhibitory activities than the parent HOPNO moiety and display strictly competitive inhibition constant, in particular with human tyrosinase. Furthermore, 11 appears to be the most active on the B16-F1 mammal melanoma cells. The investigations were completed by stereospecificity analysis. Racemic mixture of the fully protected amino acid 10 was separated by chiral HPLC into the corresponding enantiomers. Assignment of the absolute configuration of the deprotected compounds was completed, based on X-ray crystallography. The inhibition activities on melanin production were tested on lysates and whole human melanoma MNT-1 cells. Results showed significant enhancement of the inhibitory effects for the (S) enantiomer compared to the (R) enantiomer. Computational studies led to an explanation of this difference of activity based for both enantiomers on the respective position of the amino acid group versus the HOPNO plane.


Assuntos
Melanoma Experimental , Monofenol Mono-Oxigenase , Animais , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Domínio Catalítico , Aminoácidos , Melaninas , Mamíferos/metabolismo
5.
Chemistry ; 28(66): e202202251, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36005742

RESUMO

Photosensitizers that gather high photo-oxidizing power and strong visible-light absorption are of great interest in the development of new photo-chemotherapeutics. Indeed, such compounds constitute attractive candidates for the design of type I photosensitizers that are not dependent on the presence of oxygen. In this paper, we report on the synthesis and studies of new ruthenium(II) complexes that display strong visible-light absorption and can oxidize guanine residues under visible-light irradiation, as evidenced by nanosecond transient absorption spectroscopy. The reported compounds also tightly bind to G-quadruplex DNA structures from the human telomeric sequence (TTAGGG repeat). The kinetic and thermodynamic parameters of the interaction of these Ru(II) complexes with G-quadruplex and duplex DNA were studied thanks to luminescence titrations and bio-layer interferometry measurements, which revealed higher affinities towards the non-canonical G-quadruplex architecture. Docking experiments and non-covalent ionic analysis allowed us to gain information on the mode and the strength of the interaction of the compounds towards G-quadruplex and duplex DNA. The different studies emphasize the substantial influence of the position and the number of non-chelating nitrogen atoms on the interaction with both types of DNA secondary structures.


Assuntos
Complexos de Coordenação , Quadruplex G , Rutênio , Humanos , Rutênio/química , Complexos de Coordenação/química , Fármacos Fotossensibilizantes , DNA/química , Oxirredução
6.
Analyst ; 147(5): 897-904, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35142302

RESUMO

We investigated the use of POXA1b laccase from Pleurotus ostreatus for the oxidation of anthracene into anthraquinone. We show that different pathways can occur depending on the nature of the redox mediator combined to laccase, leading to different structural isomers. The laccase combined with 2,2'-azine-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) leads to the formation of 1,4-anthraquinone and/or 1,2-anthraquinone. The unprecedented role of carbon nanotubes (CNTs) as redox mediators for oxidation of anthracene into 9,10-anthraquinone is shown and corroborated by density-functional theory (DFT) calculations. Owing to the efficient adsorption of anthraquinones at CNT electrodes, anthracene can be detected with low limit-of-detection using either laccase in solution, CNT-supported laccase or laccase immobilized at magnetic beads exploiting the adhesive property of a chimeric hydrophobin-laccase.


Assuntos
Lacase , Nanotubos de Carbono , Antracenos/metabolismo , Lacase/química , Nanotubos de Carbono/química , Oxirredução , Ácidos Sulfônicos/química
7.
Chemistry ; 27(13): 4384-4393, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284485

RESUMO

Tyrosinase enzymes (Tys) are involved in the key steps of melanin (protective pigments) biosynthesis and molecules targeting the binuclear copper active site on tyrosinases represent a relevant strategy to regulate enzyme activities. In this work, the possible synergic effect generated by a combination of known inhibitors is studied. For this, derivatives containing kojic acid (KA) and 2-hydroxypyridine-N-oxide (HOPNO) combined with a thiosemicarbazone (TSC) moiety were synthetized. Their inhibition activities were evaluated on purified tyrosinases from different sources (mushroom, bacterial, and human) as well as on melanin production by lysates from the human melanoma MNT-1 cell line. Results showed significant enhancement of the inhibitory effects compared with the parent compounds, in particular for HOPNO-TSC. To elucidate the interaction mode with the dicopper(II) active site, binding studies with a tyrosinase bio-inspired model of the dicopper(II) center were investigated. The structure of the isolated adduct between one ditopic inhibitor (KA-TSC) and the model complex reveals that the binding to a dicopper center can occur with both chelating sites. Computational studies on model complexes and docking studies on enzymes led to the identification of KA and HOPNO moieties as interacting groups with the dicopper active site.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Agaricales/metabolismo , Quelantes , Inibidores Enzimáticos/farmacologia , Humanos , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
8.
Chemistry ; 24(72): 19216-19227, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30362627

RESUMO

The design and characterization of new ruthenium(II) complexes aimed at targeting G-quadruplex DNA is reported. Importantly, these complexes are based on oxidizing 1,4,5,8-tetraazaphenanthrene (TAP) ancillary ligands known to favour photo-induced electron transfer (PET) with DNA. The photochemistry of complexes 1-4 has been studied by classical methods, which revealed two of them to be capable of photo-abstracting an electron from guanine. From studies of the interactions with DNA through luminescence, circular dichroism, bio-layer interferometry, and surface plasmon resonance experiments, we have demonstrated the selectivity of these complexes for telomeric G-quadruplex DNA over duplex DNA. Preliminary biological studies of these complexes have been performed: two of them showed remarkable photo-cytotoxicity towards telomerase-negative U2OS osteosarcoma cells, whereas very low mortality was observed in the dark at the same photo-drug concentration.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , DNA/química , Quadruplex G , Rutênio/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Osteossarcoma/tratamento farmacológico , Processos Fotoquímicos , Fotoquimioterapia/métodos , Telômero/química , Telômero/efeitos dos fármacos
9.
Inorg Chem ; 57(19): 12364-12375, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226767

RESUMO

A (µ-hydroxido, µ-phenoxido)CuIICuII complex 1 has been synthesized using an unsymmetrical ligand bearing an N, N-bis(2-pyridyl)methylamine (BPA) moiety coordinating one copper and a dianionic bis-amide moiety coordinating the other copper(II) ion. Electrochemical mono-oxidation of the complex in DMF occurs reversibly at 213 K at E1/2 = 0.12 V vs Fc+/Fc through a metal-centered process. The resulting species (complex 1+) is only stable at low temperature and has been spectroscopically characterized by UV-vis-NIR cryo-spectroelectrochemical and EPR methods. DFT and TD-DFT calculations, consistent with experimental data, support the formation of a CuIICuIII phenoxido-hydroxido complex. Low-temperature chemical oxidation of 1 by NOSbF6 yields a tetranuclear complex 2(SbF6)(NO2) which displays two binuclear CuIICuII subunits. The X-ray crystal structure of 2(SbF6)(NO2) evidences that the nitrogen of the terminal amide group is protonated and the coordination of the amide occurs via the O atom. The bis-amide moiety appears to be a non-innocent proton acceptor along the redox process. Alternatively, protonation of complex 1 leads to the complex 2(ClO4)2, as evidenced by X-ray crystallography, cyclic voltammetry, and 1H NMR.

10.
Langmuir ; 34(18): 5193-5203, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29648828

RESUMO

We propose in this work a stepwise approach to construct photoelectrodes. This takes advantage of the self-assembly interactions between thiol with a gold surface and terpyridine ligands with first-row transition metals. Here, a [Ru(bpy)3]2+ photosensitive center bearing a free terpyridine group has been used to construct two linear dyads on gold (Au/[ZnII-RuII]4+ and Au/[CoIII-RuII]5+). The stepwise construction was characterized by electrochemistry, quartz crystal microbalance, and atomic force microscopy imaging. The results show that the dyads behave as rigid layers and are inhomogeneously distributed on the surface. The surface coverages are estimated to be in the order of 10-11 mol cm-2. The kinetics of the heterogeneous electron transfer is determined on modified gold ball microelectrodes using Laviron's formula. The oxidation rates of the terminal Ru(II) subunits are estimated to be 700 and 2300 s-1 for Au/[ZnII-RuII]4+ and Au/[CoIII-RuII]5+, respectively. In the latter case, the rate is limited by the kinetics of electron transfer between an intermediate Co(II) center and the gold surface. For Au/[ZnII-RuII]4+, the Zn-bis-terpyridine center is not involved in the electron-transfer process and the oxidation of the Ru(II) subunit occurs through a superexchange process. In the presence of a tertiary amine in solution, the electrodes at a bias of 0.12 V behave as photoanodes when subjected to visible light irradiation. The magnitude of the photocurrent is around 10 µA cm-2 for Au/[CoIII-RuII]5+ and 5 µA cm-2 for Au/[ZnII-RuII]4+, proving the importance of an electron relay on the photon-to-current conversion. The results suggest an efficient conversion for Au/[CoIII-RuII]5+, since each bound dyad, once excited, injects an electron around 10 times per second.

11.
Inorg Chem ; 56(14): 7707-7719, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28665137

RESUMO

The redox properties and electronic structures of a series of phenoxo- and hydroxo-bridged dicopper(II) complexes have been explored. Complexes (1a-c)2+ are based on symmetrical ligands with bis(2-methylpyridyl)aminomethyl as complexing arms bearing different substituting R groups (CH3, OCH3, or CF3) in the para position of the phenol moiety. Complex 2a2+ is based on a symmetrical ligand with bis(2-ethylpyridyl)aminomethyl arms and R = CH3, while complex 3a2+ involves an unsymmetrical ligand with two different complexing arms (namely bis(2-ethylpyridyl)aminomethyl and bis(2-methylpyridyl)aminomethyl). Investigations have been done by electrochemical and spectroelectrochemical means and correlated to theoretical calculations as this series of complexes offers a unique opportunity of an in-depth comparative analysis. The voltammetric studies have shown that the redox behavior of the dicopper complexes is not influenced by the nature of the solvent. However, the increase of the spacer chain length and the unsymmetrical design induce significant modifications of the voltammetric responses for both oxidation and reduction processes. DFT calculations of the redox potentials using a computational reference redox couple calculated at the same level of theory to reduce systematic errors confirm these results. Ligand contributions to the electronic structure of the different species have been analyzed in detail. The good agreement between experimental and theoretical results has validated the developed calculation method, which would be used in the following to design new dinuclear copper complexes. These studies demonstrate that subtle modification of the ligand topology can significantly affect the redox and spectroscopic properties. In particular, the unsymmetrical design allows the formation of a transient mixed-valent Cu(II)-Cu(III) phenoxo complex detected upon spectroelectrochemical experiments at room temperature, which evolves toward a dicopper (II,II) phenoxyl complex. The latter displays an intense π → π* transition band at 393 nm in the UV-vis spectrum compared to the less intense ligand to metal charge transfer band at 518 nm observed for the mixed-valent Cu(II)-Cu(III) phenoxo complex.

12.
Chemistry ; 23(49): 11872-11880, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28609545

RESUMO

Telomeric regions containing G-quadruplex (G4) structures play a pivotal role in the development of cancers. The development of specific binders for G4s is thus of great interest in order to gain a deeper understanding of the role of these structures, and to ultimately develop new anticancer drug candidates. For several years, RuII complexes have been studied as efficient probes for DNA. Interest in these complexes stems mainly from the tunability of their structures and properties, and the possibility of using light excitation as a tool to probe their environment or to selectively trigger their reaction with a biological target. Herein, we report on the synthesis and thorough study of new RuII complexes based on a novel dipyrazino[2,3-a:2',3'-h]phenazine ligand (dph), obtained through a Chichibabin-like reaction. Luminescence experiments, surface plasmon resonance (SPR), and computational studies have demonstrated that these complexes behave as selective probes for G-quadruplex structures.


Assuntos
Complexos de Coordenação/química , Quadruplex G , Rutênio/química , Sítios de Ligação , Complexos de Coordenação/síntese química , Humanos , Cinética , Ligantes , Medições Luminescentes , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Fenazinas/química , Ressonância de Plasmônio de Superfície , Telômero/química
13.
J Chem Theory Comput ; 13(6): 2987-3004, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28511011

RESUMO

Superoxide reductase is a mononuclear iron enzyme involved in superoxide radical detoxification in some bacteria. Its catalytic mechanism is associated with the remarkable formation of a ferric hydroperoxide Fe3+-OOH intermediate, which is specifically protonated on its proximal oxygen to generate the reaction product H2O2. Here, we present a computational study of the protonation mechanism of the Fe3+-OOH intermediate, at different levels of theory. This was performed on the whole system (solvated protein) using well-tempered metadynamics at the QM/MM (B3LYP/AmberFF99SB) level. Enabled by the development of a new set of force field parameters for the active site, a conformational MM study of the Fe3+-OOH species gave insights into its solvation pattern, in addition to generating the two starting conformations for the ab initio metadynamics setup. Two different protonation mechanisms for the Fe3+-OOH intermediate have been found depending on the starting structure. Whereas a possible mechanism involves at first the protonation of the hydroperoxide ligand and then dissociation of H2O2, the most probable one starts with an unexpected dissociation of the HOO- ligand from the iron, followed by its protonation. This favored reactivity was specifically linked to the influence of both the nearby conserved lysine 48 residue and the microsolvatation on the charge distribution of the oxygens of the HOO- ligand. These data highlight the crucial role of the whole environment, solvent, and protein, to describe accurately this second protonation step in superoxide reductase. This is clearly not possible with smaller models unable to reproduce correctly the mechanistically determinant charge distribution.


Assuntos
Compostos Férricos/metabolismo , Simulação de Dinâmica Molecular , Oxirredutases/química , Oxirredutases/metabolismo , Prótons , Teoria Quântica , Domínio Catalítico , Ligação de Hidrogênio , Peróxido de Hidrogênio/química , Proteobactérias/enzimologia , Termodinâmica
14.
ACS Med Chem Lett ; 8(1): 55-60, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28105275

RESUMO

With the aim to develop effective and selective human tyrosinase inhibitors, we investigated aurone derivatives whose B-ring was replaced by a non-oxidizable 2-hydroxypyridine-N-oxide (HOPNO) moiety. These aurones were synthesized and evaluated as inhibitors of purified human tyrosinase. Excellent inhibition activity was revealed and rationalized by theoretical calculations. The aurone backbone was especially found to play a crucial role, as the HOPNO moiety alone provided very modest activity on human tyrosinase. Furthermore, the in vitro activity was confirmed by measuring the melanogenesis suppression ability of the compounds in melanoma cell lysates and whole cells. Our study reveals that HOPNO-embedded 6-hydroxyaurone is to date the most effective inhibitor of isolated human tyrosinase. Owing to its low toxicity and its high inhibition activity, it could represent a milestone on the path toward new valuable agents in dermocosmetics, as well as in medical fields where it was recently suggested that tyrosinase could play key roles.

15.
ACS Omega ; 2(4): 1550-1562, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023639

RESUMO

Little is known about the biological and structural features that govern the isoform selectivity for class I histone deacetylases (HDACs) over HDAC6. In addition to that for known inhibitors, like benzamides, psammaplin A, and cyclodepsipeptide-derived thiols, selectivity was also observed for naturally occurring cyclopeptide HDAC inhibitors with an aliphatic flexible linker and ketonelike zinc-binding group (ZBG). The present study reports that this isoform selectivity is mainly due to the linker and ZBG, as replacement of the cyclopeptide cap region by a simple aniline retained class I HDAC isoform selectivity toward HDAC6 in enzymatic assays. The best cyclopeptide-free analogues preserved efficacy against Plasmodium falciparum and cancer cell lines. Molecular modeling provided hypotheses to explain this selectivity and suggests different behaviors of the flexible linker on HDAC1 and HDAC6 pockets, which may influence, on the basis of the strength of the ZBG, its coordination with the zinc ion.

16.
Inorg Chem ; 55(17): 8263-6, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27518211

RESUMO

Bis(µ-hydroxo)dicopper(II,II) bearing a naphthyridine-based ligand has been synthesized and characterized in the solid state and solution. Cyclic voltammetry at room temperature displays a reversible redox system that corresponds to the monoelectronic oxidation of the complex. Spectroscopic and time-resolved spectroelectrochemical data coupled to theoretical results support the formation of a charge-localized mixed-valent Cu(II,III)2 species.

17.
ChemMedChem ; 11(11): 1133-6, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27166712

RESUMO

Four nickel(II)-salophen complexes containing alkyl-imidazolium chains connected at the ortho or meta positions were prepared: N,N'-bis(2-hydroxy-4-methyl-3H-imidazol-1-iumbenzylideneamino)phenylenediamine (1), N,N'-bis(2-hydroxy-3-methyl-3H-imidazol-1-iumbenzylideneamino)phenylenediamine (2), N,N'-bis(2-hydroxy-3-methyl-3H-imidazol-1-iumbenzylideneamino)methyl-3H-imidazol-1-iumphenylenediamine (3), and N,N'-bis(2-hydroxy-4-methyl-3H-imidazol-1-iumbenzylideneamino)methyl-3H-imidazol-1-iumphenylenediamine (4). They protect G-quadruplex DNA (G4 -DNA) against thermal denaturation and show KA values in the range of 7.4×10(5) to 4×10(7) m(-1) for G4 -DNA models. Complex 4 exhibits an IC50 value of 70 nm for telomerase inhibition.


Assuntos
Complexos de Coordenação/química , Níquel/química , Salicilatos/química , Telomerase/metabolismo , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Quadruplex G/efeitos dos fármacos , Células HeLa , Humanos , Cinética , Biossíntese de Proteínas/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Curr Top Med Chem ; 16(27): 3033-3047, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881706

RESUMO

Among the human copper-containing monooxygenases, Tyrosinase (Ty) is an important enzyme involved in the determinant step of the biosynthetic pathway of melanin pigment. In this pathway, Ty catalyzes the tyrosine monooxygenation into L-DOPA-quinone, which is the precursor of the skin pigment melanin. Ty inhibitors/activators are a well-established approach for controlling in vivo melanin production, so their development has a huge economical and industrial impact. Moreover, recent publications highlight that targeting tyrosinase with inhibitors/activators to treat melanogenesis disorders is one of many possible approaches, due to the complex biochemical reaction involved in the melanin synthesis.


Assuntos
Melanoma/tratamento farmacológico , Monofenol Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Biocatálise , Humanos , Melanoma/enzimologia , Melanoma/patologia , Modelos Moleculares , Monofenol Mono-Oxigenase/química , Proteínas de Neoplasias/química , Proteínas de Neoplasias/efeitos dos fármacos , Homologia de Sequência de Aminoácidos
19.
Inorg Chem ; 53(23): 12519-31, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25383703

RESUMO

A series of nine Ni(II) salophen complexes involving one, two, or three alkyl-imidazolium side-chains was prepared. The lengths of the side-chains were varied from one to three carbons. The crystal structure of one complex revealed a square planar geometry of the nickel ion. Fluorescence resonance energy transfer melting of G-quadruplex structures in the presence of salophen complex were performed. The G-quadruplex DNA structures were stabilized in the presence of the complexes, but a duplex DNA was not. The binding constants of the complexes for parallel and antiparallel G-quadruplex DNA, as well as hairpin DNA, were measured by surface plasmon resonance. The compounds were selective for G-quadruplex DNA, as reflected by equilibrium dissociation constant KD values in the region 0.1-1 µM for G-quadruplexes and greater than 2 µM for duplex DNA. Complexes with more and shorter side-chains had the highest binding constants. The structural basis for the interaction of the complexes with the human telomeric G-quadruplex DNA was investigated by computational studies: the aromatic core of the complex stacked over the last tetrad of the G-quadruplex with peripherical cationic side chains inserted into opposite grooves. Biochemical studies (telomeric repeat amplification protocol assays) indicated that the complexes significantly inhibited telomerase activity with IC50 values as low as 700 nM; the complexes did not significantly inhibit polymerase activity.


Assuntos
Quadruplex G , Compostos Organometálicos/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
20.
Inorg Chem ; 53(24): 12848-58, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25415587

RESUMO

Tyrosinase (Ty) is a copper-containing enzyme widely present in plants, bacteria, and humans, where it is involved in biosynthesis of melanin-type pigments. Development of Ty inhibitors is an important approach to control the production and the accumulation of pigments in living systems. In this paper, we focused our interest in phenylthiourea (PTU) and phenylmethylene thiosemicarbazone (PTSC) recognized as inhibitors of tyrosinase by combining enzymatic studies and coordination chemistry methods. Both are efficient inhibitors of mushroom tyrosinase and they can be considered mainly as competitive inhibitors. Computational studies verify that PTSC and PTU inhibitors interact with the metal center of the active site. The KIC value of 0.93 µM confirms that PTSC is a much more efficient inhibitor than PTU, for which a KIC value of 58 µM was determined. The estimation of the binding free energies inhibitors/Ty confirms the high inhibitor efficiency of PTSC. Binding studies of PTSC along with PTU to a dinuclear copper(II) complex ([Cu2(µ-BPMP)(µ-OH)](ClO4)2 (1); H-BPMP = 2,6-bis-[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) known to be a structural and functional model for the tyrosinase catecholase activity, have been performed. Interactions of the compounds with the dicopper model complex 1 were followed by spectrophotometry and electrospray ionization (ESI). The molecular structure of 1-PTSC and 1-PTU adducts were determined by single-crystal X-ray diffraction analysis showing for both an unusual bridging binding mode on the dicopper center. These results reflect their adaptable binding mode in relation to the geometry and chelate size of the dicopper center.


Assuntos
Agaricus/enzimologia , Cobre/química , Inibidores Enzimáticos/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Feniltioureia/química , Tiossemicarbazonas/química , Agaricus/química , Agaricus/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Levodopa/metabolismo , Modelos Moleculares , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Oxirredução/efeitos dos fármacos , Feniltioureia/farmacologia , Tiossemicarbazonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...