Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6507, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875503

RESUMO

The East Antarctic Ice Sheet (EAIS) has its origins ca. 34 million years ago. Since then, the impact of climate change and past fluctuations in the EAIS margin has been reflected in periods of extensive vs. restricted ice cover and the modification of much of the Antarctic landscape. Resolving processes of landscape evolution is therefore critical for establishing ice sheet history, but it is rare to find unmodified landscapes that record past ice conditions. Here, we discover an extensive relic pre-glacial landscape preserved beneath the central EAIS despite millions of years of ice cover. The landscape was formed by rivers prior to ice sheet build-up but later modified by local glaciation before being dissected by outlet glaciers at the margin of a restricted ice sheet. Preservation of the relic surfaces indicates an absence of significant warm-based ice throughout their history, suggesting any transitions between restricted and expanded ice were rapid.

2.
Nature ; 608(7922): 275-286, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948707

RESUMO

The East Antarctic Ice Sheet contains the vast majority of Earth's glacier ice (about 52 metres sea-level equivalent), but is often viewed as less vulnerable to global warming than the West Antarctic or Greenland ice sheets. However, some regions of the East Antarctic Ice Sheet have lost mass over recent decades, prompting the need to re-evaluate its sensitivity to climate change. Here we review the response of the East Antarctic Ice Sheet to past warm periods, synthesize current observations of change and evaluate future projections. Some marine-based catchments that underwent notable mass loss during past warm periods are losing mass at present but most projections indicate increased accumulation across the East Antarctic Ice Sheet over the twenty-first century, keeping the ice sheet broadly in balance. Beyond 2100, high-emissions scenarios generate increased ice discharge and potentially several metres of sea-level rise within just a few centuries, but substantial mass loss could be averted if the Paris Agreement to limit warming below 2 degrees Celsius is satisfied.


Assuntos
Modelos Climáticos , Aquecimento Global , Camada de Gelo , Temperatura , Regiões Antárticas , Previsões , Aquecimento Global/história , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , História do Século XXI , Elevação do Nível do Mar/história , Elevação do Nível do Mar/estatística & dados numéricos
3.
Sci Rep ; 12(1): 10968, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768612

RESUMO

Antarctica's contribution to global mean sea level rise has been driven by an increase in ice discharge into the oceans. The rate of change and the mechanisms that drive variability in ice discharge are therefore important to consider in the context of projected future warming. Here, we report observations of both decadal trends and inter-annual variability in ice discharge across the Antarctic Ice Sheet at a variety of spatial scales that range from large drainage basins to individual outlet glacier catchments. Overall, we find a 37 ± 11 Gt year-1 increase in discharge between 1999 and 2010, but a much smaller increase of 4 ± 8 Gt year-1 between 2010 and 2018. Furthermore, comparisons reveal that neighbouring outlet glaciers can behave synchronously, but others show opposing trends, despite their close proximity. We link this spatial and temporal variability to changes in ice shelf buttressing and the modulating effect of local glacier geometry.

4.
Nat Commun ; 13(1): 1711, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361810

RESUMO

Antarctic supraglacial lakes (SGLs) have been linked to ice shelf collapse and the subsequent acceleration of inland ice flow, but observations of SGLs remain relatively scarce and their interannual variability is largely unknown. This makes it difficult to assess whether some ice shelves are close to thresholds of stability under climate warming. Here, we present the first observations of SGLs across the entire East Antarctic Ice Sheet over multiple melt seasons (2014-2020). Interannual variability in SGL volume is >200% on some ice shelves, but patterns are highly asynchronous. More extensive, deeper SGLs correlate with higher summer (December-January-February) air temperatures, but comparisons with modelled melt and runoff are complex. However, we find that modelled January melt and the ratio of November firn air content to summer melt are important predictors of SGL volume on some potentially vulnerable ice shelves, suggesting large increases in SGLs should be expected under future atmospheric warming.


Assuntos
Camada de Gelo , Lagos , Regiões Antárticas , Clima , Temperatura
5.
Sci Rep ; 10(1): 1923, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32001806

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Sci Rep ; 9(1): 13823, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554854

RESUMO

Supraglacial lakes are important to ice sheet mass balance because their development and drainage has been linked to changes in ice flow velocity and ice shelf disintegration. However, little is known about their distribution on the world's largest ice sheet in East Antarctica. Here, we use ~5 million km2 of high-resolution satellite imagery to identify >65,000 lakes (>1,300 km2) that formed around the peak of the melt season in January 2017. Lakes occur in most marginal areas where they typically develop at low elevations (<100 m) and on low surface slopes (<1°), but they can exist 500 km inland and at elevations >1500 m. We find that lakes often cluster a few kilometres down-ice from grounding lines and ~60% (>80% by area) develop on ice shelves, including some potentially vulnerable to collapse driven by lake-induced hydro-fracturing. This suggests that parts of the ice sheet may be highly sensitive to climate warming.

7.
Sci Adv ; 2(5): e1501350, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386519

RESUMO

The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to advance in every drainage basin during the two most recent periods, 1990-2000 and 2000-2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica.


Assuntos
Camada de Gelo , Gelo , Água do Mar , Regiões Antárticas , Clima , Geografia , Oceanos e Mares , Estações do Ano
8.
J Geophys Res Earth Surf ; 120(7): 1418-1435, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27500077

RESUMO

Rapid glacier advance is known to occur by a range of mechanisms. However, although large-scale debris loading has been proposed as a process for causing rapid terminus advance, it has rarely been observed. We use satellite remote sensing data to observe accelerated glacier terminus advance in response to massive supraglacial loading on two glaciers in Kyrgyzstan. Over a 15 year period, mining activity has led to the dumping of spoil of up to 180 m thick on large parts of these valley glaciers. We find that the termini of these glaciers advance by 1.2 and 3.2 km, respectively, at a rate of up to 350 m yr-1. Our analysis suggests that although enhanced basal sliding could be an important process, massive supraglacial loads have also caused enhanced internal ice deformation that would account for most, or all, of the glacier terminus advance. In addition, narrowing of the glacier valley and mining and dumping of ice alter the mass balance and flow regime of the glaciers. Although the scale of supraglacial loading is massive, this full-scale experiment provides insight into glacier flow acceleration response where small valley glaciers are impacted by very large volumes of landslide debris.

9.
Nature ; 488(7409): 73-7, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859204

RESUMO

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.


Assuntos
Efeito Estufa/história , Temperatura , Clima Tropical , Animais , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Respiração Celular , Ecossistema , Sedimentos Geológicos/química , História Antiga , Atividades Humanas , Lipídeos/análise , Modelos Teóricos , Fotossíntese , Pólen , Reprodutibilidade dos Testes , Estações do Ano , Esporos/isolamento & purificação , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...