Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992255

RESUMO

Chemokine receptor type 4 (CXCR4) is a G protein-coupled receptor that plays an essential role in immune system function and disease processes. Our study aims to conduct a comparative structural and phylogenetic analysis of the CXCR4 protein to gain insights into its role in emerging and re-emerging diseases that impact the health of mammals. In this study, we analyzed the evolution of CXCR4 genes across a wide range of mammalian species. The phylogenetic study showed species-specific evolutionary patterns. Our analysis revealed novel insights into the evolutionary history of CXCR4, including genetic changes that may have led to functional differences in the protein. This study revealed that the structural homologous human proteins and mammalian CXCR4 shared many characteristics. We also examined the three-dimensional structure of CXCR4 and its interactions with other molecules in the cell. Our findings provide new insights into the genomic landscape of CXCR4 in the context of emerging and re-emerging diseases, which could inform the development of more effective treatments or prevention strategies. Overall, our study sheds light on the vital role of CXCR4 in mammalian health and disease, highlighting its potential as a therapeutic target for various diseases impacting human and animal health. These findings provided insight into the study of human immunological disorders by indicating that Chemokines may have activities identical to or similar to those in humans and several mammalian species.

2.
PLoS One ; 17(2): e0264269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213642

RESUMO

The sucrose synthase (SS) is an important enzyme family which play a vital role in sugar metabolism to improve the fruit quality of the plants. In many plant species, the members of SS family have been investigated but the detailed information is not available in legumes particularly and Glycine max specifically. In the present study, we found thirteen SS members (GmSS1-GmSS13) in G. max genome. High conserved regions were present in the GmSS sequences that may due to the selection pressure during evolutionary events. The segmental duplication was the major factor to increase the number of GmSS family members. The identified thirteen GmSS genes were divided into Class I, Class II and Class III with variable numbers of genes in each class. The protein interaction of GmSS gave the co-expression of sucrose synthase with glucose-1-phosphate adenylyltransferase while SLAC and REL test found number of positive sites in the coding sequences of SS family members. All the GmSS family members except GmSS7 and few of class III members, were highly expressed in all the soybean tissues. The expression of the class I members decreased during seed development, whireas, the class II members expression increased during the seed developing, may involve in sugar metabolism during seed development. Solexa sequencing libraries of acidic condition (pH 4.2) stress samples showed that the expression of class I GmSS genes increased 1- to 2-folds in treated samples than control. The differential expression pattern was observed between the members of a paralogous. This study provides detailed genome-wide analysis of GmSS family in soybean that will provide new insights for future evolutionary and soybean breeding to improve the plant growth and development.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases , Glycine max , Sementes , Proteínas de Soja , Estresse Fisiológico , Estudo de Associação Genômica Ampla , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , Sementes/enzimologia , Sementes/genética , Proteínas de Soja/biossíntese , Proteínas de Soja/genética , Glycine max/enzimologia , Glycine max/genética
3.
Plant Mol Biol ; 100(6): 607-620, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31123969

RESUMO

A vital role of short amino acid gene family, gibberellic acid stimulated arabidopsis (GASA), has been reported in plant growth and development. Although, little information is available about these cysteine rich short proteins in different plant species and this is the first comprehensive approach to exploit available genomic data and to analyze the GASA family in G. max. The phylogenetic and sequence composition analysis distributed the 37 identified GmGASA genes into three groups. Further investigation of the tissue expression pattern, phylogenetic analysis, motif, gene structure, chromosome distributions, duplication patterns, positive-selection pressure and cis-element analysis of 37 GmGASA genes. A conserved GASA domain was found in all identified GmGASA genes and exhibited similar characteristics. The online gene expression profile based analysis of GmGASA genes reveled that these genes were highly expressed in almost all soybean parts and some have high expression in flower which indicates that GmGASA genes displayed special or distinct expression pattern among different tissues. The segmental duplication was found in five pairs from 37 GmGASA genes and was distributed on 15 different chromosomes. The Ka/Ks ratio of 5 pairs of segmentally duplicated gene indicated that after the occurrence of duplication events, the duplicated gene pairs were purified and selected after restrictive functional differentiation. This investigated study of GmGASA gene will useful to support the statement about GASA genes role during flower induction in flowering plants.


Assuntos
Genoma de Planta , Giberelinas/metabolismo , Glycine max/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Cromossomos/ultraestrutura , Cromossomos de Plantas , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Filogenia , Regiões Promotoras Genéticas , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...