Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 18(3): 343-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23361122

RESUMO

Lipoxygenases (LOXs) are ubiquitous in nature and catalyze a range of life-essential reactions within organisms. In particular they are critical to the formation of eicosanoids, which are critical for normal cell function. However, a number of important questions about the reactivity and mechanism of these enzymes still remain. Specifically, although the initial step in the mechanism of LOXs has been well studied, little is known of subsequent steps. Thus, with use of a quantum mechanical/molecular mechanical approach, the complete catalytic mechanism of (8R)-LOX was investigated. The results have provided a better understanding of the general chemistry of LOXs as a whole. In particular, from comparisons with soybean LOX-1, it appears that the initial proton-coupled electron transfer may be very similar among all LOXs. Furthermore, LOXs appear to undergo multistate reactivity where potential spin inversion of an electron may occur either in the attack of O(2) or in the regeneration of the active site. Lastly, it is shown that with the explicit modeling of the environment, the regeneration of the active center likely occurs via the rotation of the intermediate followed by an outer-sphere [Formula: see text] transfer as opposed to the formation of a "purple intermediate" complex.


Assuntos
Antozoários/enzimologia , Araquidonato Lipoxigenases/química , Araquidonato Lipoxigenases/metabolismo , Animais , Antozoários/química , Domínio Catalítico , Ativação Enzimática , Lipoxigenase/química , Lipoxigenase/metabolismo , Simulação de Acoplamento Molecular , Peróxidos/química , Peróxidos/metabolismo , Conformação Proteica , Teoria Quântica , Glycine max/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...