Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Med Chem ; 67(16): 13550-13571, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38687966

RESUMO

Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/farmacocinética , Antivirais/uso terapêutico , Antivirais/química , Administração Oral , Inibidores de Proteases/farmacologia , Inibidores de Proteases/farmacocinética , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Ratos , COVID-19/virologia
2.
Kans J Med ; 16: 194-199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791020

RESUMO

Introduction: With the launch of the SARS-CoV-2 (COVID-19) vaccines, a new cohort of people exists who do not consider themselves to be completely vaccine-hesitant, but are specifically COVID-19 vaccine hesitant (CVH). There is a need to learn from CVH parents, to ensure their concerns are addressed, and allow them to comfortably vaccinate their children against the COVID-19 virus. Methods: Surveys were used to identify CVH parents. Using semistructured interviews, we assessed the attitudes of CVH parents toward COVID-19 vaccination in children. An inductive coding method was used to analyze transcripts and develop themes. Results: Fourteen parents were interviewed. Seven (50%) had received the COVID-19 vaccine even though they had doubts. Six reported that education about mRNA vaccine production was helpful in deciding to get vaccinated. Parents were reluctant regarding pediatric vaccination due to lack of long-term studies and concerns about adverse impact on childhood development. Personal physicians were the most trusted source of information and direct conversations with them were the most influential, as opposed to public health leaders like the U.S. Centers for Disease Control and Prevention and the National Institutes of Health. Conclusions: Our findings suggested that physicians are among the most trusted sources of information regarding the COVID-19 vaccine for CVH parents. Rather than use broad public health messaging and advertising to increase rates of vaccination, further investigation into training health professionals on how to counsel CVH patients effectively may be a higher impact area of opportunity to improve vaccine response rates.

3.
Nat Commun ; 14(1): 5938, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741852

RESUMO

GPR61 is an orphan GPCR related to biogenic amine receptors. Its association with phenotypes relating to appetite makes it of interest as a druggable target to treat disorders of metabolism and body weight, such as obesity and cachexia. To date, the lack of structural information or a known biological ligand or tool compound has hindered comprehensive efforts to study GPR61 structure and function. Here, we report a structural characterization of GPR61, in both its active-like complex with heterotrimeric G protein and in its inactive state. Moreover, we report the discovery of a potent and selective small-molecule inverse agonist against GPR61 and structural elucidation of its allosteric binding site and mode of action. These findings offer mechanistic insights into an orphan GPCR while providing both a structural framework and tool compound to support further studies of GPR61 function and modulation.


Assuntos
Agonismo Inverso de Drogas , Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Sítio Alostérico , Apetite , Sítios de Ligação , Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores Acoplados a Proteínas G/agonistas
4.
PLoS Genet ; 19(8): e1010904, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639465

RESUMO

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.


Assuntos
Ritmo Circadiano , Neoplasias , Proteínas Proto-Oncogênicas c-myc , Humanos , Aminoácidos/metabolismo , Linhagem Celular , Membrana Celular , Metabolômica , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
5.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36711638

RESUMO

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.

6.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34726479

RESUMO

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Assuntos
Tratamento Farmacológico da COVID-19 , Lactamas/farmacologia , Lactamas/uso terapêutico , Leucina/farmacologia , Leucina/uso terapêutico , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Prolina/farmacologia , Prolina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Inibidores de Protease Viral/farmacologia , Inibidores de Protease Viral/uso terapêutico , Administração Oral , Animais , COVID-19/virologia , Ensaios Clínicos Fase I como Assunto , Coronavirus/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada , Humanos , Lactamas/administração & dosagem , Lactamas/farmacocinética , Leucina/administração & dosagem , Leucina/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Nitrilas/administração & dosagem , Nitrilas/farmacocinética , Prolina/administração & dosagem , Prolina/farmacocinética , Ensaios Clínicos Controlados Aleatórios como Assunto , Ritonavir/administração & dosagem , Ritonavir/uso terapêutico , SARS-CoV-2/fisiologia , Inibidores de Protease Viral/administração & dosagem , Inibidores de Protease Viral/farmacocinética , Replicação Viral/efeitos dos fármacos
7.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299381

RESUMO

The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Carcinogênese/genética , Cromatina/genética , Humanos , Proteínas Circadianas Period/genética , Transcrição Gênica/genética
8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261232

RESUMO

AbstractThe worldwide outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an established global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to counter the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity, and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse- adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency, in a phase I clinical trial in healthy human participants. ClinicalTrials.gov Identifier: NCT04756531 One-Sentence SummaryPF-07321332 is disclosed as a novel, orally active, investigational small-molecule inhibitor of the SARS-CoV-2 main protease, which is being evaluated in clinical trials for the treatment of COVID-19.

9.
Cell Chem Biol ; 28(2): 148-157.e7, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32997975

RESUMO

Utilizing a phenotypic screen, we identified chemical matter that increased astrocytic apoE secretion in vitro. We designed a clickable photoaffinity probe based on a pyrrolidine lead compound and carried out probe-based quantitative chemical proteomics in human astrocytoma CCF-STTG1 cells to identify liver x receptor ß (LXRß) as the target. Binding of the small molecule ligand stabilized LXRß, as shown by cellular thermal shift assay (CETSA). In addition, we identified a probe-modified peptide by mass spectrometry and proposed a model where the photoaffinity probe is bound in the ligand-binding pocket of LXRß. Taken together, our findings demonstrated that the lead chemical matter bound directly to LXRß, and our results highlight the power of chemical proteomic approaches to identify the target of a phenotypic screening hit. Additionally, the LXR photoaffinity probe and lead compound described herein may serve as valuable tools to further evaluate the LXR pathway.


Assuntos
Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Receptores X do Fígado/metabolismo , Astrócitos/citologia , Linhagem Celular , Humanos , Ligantes , Ligação Proteica , Proteômica
10.
PLoS One ; 15(11): e0242737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253256

RESUMO

Posttranscriptional modification of tRNA is critical for efficient protein translation and proper cell growth, and defects in tRNA modifications are often associated with human disease. Although most of the enzymes required for eukaryotic tRNA modifications are known, many of these enzymes have not been identified and characterized in several model multicellular eukaryotes. Here, we present two related approaches to identify the genes required for tRNA modifications in multicellular organisms using primer extension assays with fluorescent oligonucleotides. To demonstrate the utility of these approaches we first use expression of exogenous genes in yeast to experimentally identify two TRM1 orthologs capable of forming N2,N2-dimethylguanosine (m2,2G) on residue 26 of cytosolic tRNA in the model plant Arabidopsis thaliana. We also show that a predicted catalytic aspartate residue is required for function in each of the proteins. We next use RNA interference in cultured Drosophila melanogaster cells to identify the gene required for m2,2G26 formation on cytosolic tRNA. Additionally, using these approaches we experimentally identify D. melanogaster gene CG10050 as the corresponding ortholog of human DTWD2, which encodes the protein required for formation of 3-amino-3-propylcarboxyuridine (acp3U) on residue 20a of cytosolic tRNA. We further show that A. thaliana gene AT2G41750 can form acp3U20b on an A. thaliana tRNA expressed in yeast cells, and that the aspartate and tryptophan residues in the DXTW motif of this protein are required for modification activity. These results demonstrate that these approaches can be used to study tRNA modification enzymes.


Assuntos
Proteínas de Arabidopsis , Citosol/enzimologia , Proteínas de Drosophila , RNA de Transferência , tRNA Metiltransferases , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
11.
Mol Pharmacol ; 94(2): 823-833, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29853495

RESUMO

Kynurenic acid (KYNA) plays a significant role in maintaining normal brain function, and abnormalities in KYNA levels have been associated with various central nervous system disorders. Confirmation of its causality in human diseases requires safe and effective modulation of central KYNA levels in the clinic. The kynurenine aminotransferases (KAT) II enzyme represents an attractive target for pharmacologic modulation of central KYNA levels; however, KAT II and KYNA turnover kinetics, which could contribute to the duration of pharmacologic effect, have not been reported. In this study, the kinetics of central KYNA-lowering effect in rats and nonhuman primates (NHPs, Cynomolgus macaques) was investigated using multiple KAT II irreversible inhibitors as pharmacologic probes. Mechanistic pharmacokinetic-pharmacodynamic analysis of in vivo responses to irreversible inhibition quantitatively revealed that 1) KAT II turnover is relatively slow [16-76 hours' half-life (t1/2)], whereas KYNA is cleared more rapidly from the brain (<1 hour t1/2) in both rats and NHPs, 2) KAT II turnover is slower in NHPs than in rats (76 hours vs. 16 hours t1/2, respectively), and 3) the percent contribution of KAT II to KYNA formation is constant (∼80%) across rats and NHPs. Additionally, modeling results enabled establishment of in vitro-in vivo correlation for both enzyme turnover rates and drug potencies. In summary, quantitative translational analysis confirmed the feasibility of central KYNA modulation in humans. Model-based analysis, where system-specific properties and drug-specific properties are mechanistically separated from in vivo responses, enabled quantitative understanding of the KAT II-KYNA pathway, as well as assisted development of promising candidates to test KYNA hypothesis in humans.


Assuntos
Encéfalo/metabolismo , Inibidores Enzimáticos/administração & dosagem , Ácido Cinurênico/análise , Transaminases/metabolismo , Animais , Química Encefálica/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Inibidores Enzimáticos/farmacologia , Feminino , Meia-Vida , Humanos , Macaca fascicularis , Masculino , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Ratos , Espectrometria de Massas em Tandem , Transaminases/antagonistas & inibidores
12.
J Med Chem ; 60(18): 7764-7780, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28817277

RESUMO

We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu5 negative allosteric modulator (NAM) 7. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu5 NAMs. Increasing the sp3 character of high-throughput screening hit 40 afforded a novel morpholinopyrimidone mGlu5 NAM series. Its prototype, (R)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894, 8), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound 8 did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that 8 did not form any reactive metabolites. However, 8 caused the identical microscopic skin lesions in NHPs found with 7, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Piridinas/farmacologia , Piridinas/farmacocinética , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Feminino , Células HEK293 , Compostos Heterocíclicos com 3 Anéis/efeitos adversos , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Masculino , Simulação de Acoplamento Molecular , Piridinas/efeitos adversos , Piridinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
13.
J Med Chem ; 58(22): 8762-82, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26207924

RESUMO

The kynurenine pathway is responsible for the metabolism of more than 95% of dietary tryptophan (TRP) and produces numerous bioactive metabolites. Recent studies have focused on three enzymes in this pathway: indoleamine dioxygenase (IDO1), kynurenine monooxygenase (KMO), and kynurenine aminotransferase II (KAT II). IDO1 inhibitors are currently in clinical trials for the treatment of cancer, and these agents may also have therapeutic utility in neurological disorders, including multiple sclerosis. KMO inhibitors are being investigated as potential treatments for neurodegenerative diseases, such as Huntington's and Alzheimer's diseases. KAT II inhibitors have been proposed in new therapeutic approaches toward psychiatric and cognitive disorders, including cognitive impairment associated with schizophrenia. Numerous medicinal chemistry studies are currently aimed at the design of novel, potent, and selective inhibitors for each of these enzymes. The emerging opportunities and significant challenges associated with pharmacological modulation of these enzymes will be explored in this review.


Assuntos
Cinurenina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Transaminases/antagonistas & inibidores
14.
J Med Chem ; 57(3): 861-77, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24392688

RESUMO

A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.


Assuntos
Pirazinas/síntese química , Pirazóis/síntese química , Receptor de Glutamato Metabotrópico 5/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Administração Oral , Regulação Alostérica , Animais , Antiparkinsonianos/efeitos adversos , Disponibilidade Biológica , Permeabilidade da Membrana Celular , Cães , Discinesia Induzida por Medicamentos/tratamento farmacológico , Células HEK293 , Humanos , Hipersensibilidade Tardia/induzido quimicamente , Levodopa/efeitos adversos , Macaca fascicularis , Células Madin Darby de Rim Canino , Masculino , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Pirazinas/farmacologia , Pirazinas/toxicidade , Pirazóis/farmacologia , Pirazóis/toxicidade , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
16.
Br J Cancer ; 109(6): 1593-8, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23799845

RESUMO

BACKGROUND: BCR-ABL1 mutation analysis is recommended for chronic myeloid leukaemia patients. However, mutations may become undetectable after changing therapy, and it is unknown whether they have been eradicated. METHODS: We examined longitudinal data of patients with imatinib-resistant mutations, which became undetectable by Sanger sequencing to determine whether mutations could reappear, and the related circumstances. RESULTS: Identical imatinib- and nilotinib-resistant mutations reappeared following further therapy changes in five patients, and was associated with subsequent nilotinib resistance in four. CONCLUSION: The data suggest that some BCR-ABL1 mutations may persist at undetectable levels for many years after changing therapy, and can be reselected and confer resistance to subsequent inhibitors.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Adulto , Idoso , Benzamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Piperazinas/farmacologia , Pirimidinas/farmacologia , Estudos Retrospectivos
17.
Bioorg Med Chem Lett ; 23(7): 1961-6, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23466229

RESUMO

The structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a k(inact)/K(i) value of 112,000 M(-1)s(-1) and lipophilic efficiency (LipE) of 8.53. The X-ray crystal structure of 20 with KAT II demonstrates key features that contribute to this remarkable potency and binding efficiency.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Pirazóis/farmacologia , Transaminases/antagonistas & inibidores , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Transaminases/metabolismo
18.
ACS Med Chem Lett ; 4(1): 37-40, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900560

RESUMO

A series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure-activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate 4, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of k inact/K i to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles.

19.
J Med Chem ; 55(21): 9045-54, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22780914

RESUMO

6-[(3S,4S)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (PF-04447943) is a novel PDE9A inhibitor identified using parallel synthetic chemistry and structure-based drug design (SBDD) and has advanced into clinical trials. Selectivity for PDE9A over other PDE family members was achieved by targeting key residue differences between the PDE9A and PDE1C catalytic site. The physicochemical properties of the series were optimized to provide excellent in vitro and in vivo pharmacokinetics properties in multiple species including humans. It has been reported to elevate central cGMP levels in the brain and CSF of rodents. In addition, it exhibits procognitive activity in several rodent models and synaptic stabilization in an amyloid precursor protein (APP) transgenic mouse model. Recent disclosures from clinical trials confirm that it is well tolerated in humans and elevates cGMP in cerebral spinal fluid of healthy volunteers, confirming that it is a quality pharmacological tool for testing clinical hypotheses in disease states associated with impairment of cGMP signaling or cognition.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Encéfalo/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Pirazóis/síntese química , Pirimidinonas/síntese química , Precursor de Proteína beta-Amiloide/genética , Animais , Domínio Catalítico , Cristalografia por Raios X , GMP Cíclico/metabolismo , Cães , Desenho de Fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Conformação Proteica , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinonas/farmacocinética , Pirimidinonas/farmacologia , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
20.
ACS Med Chem Lett ; 3(3): 187-92, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900455

RESUMO

Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA