Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Commun Biol ; 6(1): 1092, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891428

RESUMO

In all domains of life, transfer RNAs (tRNAs) contain post-transcriptionally sulfur-modified nucleosides such as 2- and 4-thiouridine. We have previously reported that a recombinant [4Fe-4S] cluster-containing bacterial desulfidase (TudS) from an uncultured bacterium catalyzes the desulfuration of 2- and 4-thiouracil via a [4Fe-5S] cluster intermediate. However, the in vivo function of TudS enzymes has remained unclear and direct evidence for substrate binding to the [4Fe-4S] cluster during catalysis was lacking. Here, we provide kinetic evidence that 4-thiouridine-5'-monophosphate rather than sulfurated tRNA, thiouracil, thiouridine or 4-thiouridine-5'-triphosphate is the preferred substrate of TudS. The occurrence of sulfur- and substrate-bound catalytic intermediates was uncovered from the observed switch of the S = 3/2 spin state of the catalytic [4Fe-4S] cluster to a S = 1/2 spin state upon substrate addition. We show that a putative gene product from Pseudomonas putida KT2440 acts as a TudS desulfidase in vivo and conclude that TudS-like enzymes are widespread desulfidases involved in recycling and detoxifying tRNA-derived 4-thiouridine monophosphate nucleosides for RNA synthesis.


Assuntos
RNA de Transferência , Tiouridina , Tiouridina/metabolismo , RNA de Transferência/genética , Bactérias/genética , Catálise , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...