Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766242

RESUMO

Blood storage lesion induces cytosolic and membrane changes driven in part by hemoglobin (Hb) oxidation reactions within red blood cells (RBCs). A novel gel formulation containing the antioxidant curcuminoids in a biocompatible solvent system was used to deliver curcumin into RBCs. Incubation of peroxide treated RBCs stored in PBS with curcumin gel led to a reduction in prooxidant ferrylHb and recovery in ATP. Curcumin treatment prevented band 3 tyrosine (Y359 and Y21) phosphorylation. RBCs stored in AS-3 solutions for 28, 35, 42 and 49 days, following a single-dose of 100µM curcuminoids at each time points, caused reduction in protein carbonylation and considerable recovery in ATP levels. Proteomic analysis revealed minimal changes in the proteomic landscape in 35 days. However, a downregulation in fibrinogen was observed in the treated samples which may reduce RBC aggregation. Additionally, we used a guinea pig model where the circulation of infused aged RBCs can be extended (approximately 10%) when treated with curcumin gel at the start of storage. Our data therefore provide mechanistic insights and supportive animal data into benefits of treating stored RBCs with a novel curcuminoid formulation based on the biopreservation of RBC membrane integrity, redox balance, and increased longevity in circulation.

2.
Front Physiol ; 14: 1278763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916221

RESUMO

Red blood cells (RBCs) undergo metabolic, oxidative, and physiological changes during storage, collectively described as the "storage lesion." The impact of storage on oxygen homeostasis, following transfusion, is not fully understood. We show that RBC storage induces changes in oxygen binding that were linked to changes in oxygen sensing (hypoxia-inducible factor, HIF-1α) mechanisms and mitochondrial respiration in human pulmonary arterial endothelial cells (HPAECs). A decrease in oxygen affinity (P50) to approximately 20 from 30 mmHg was seen at the first week but remained unchanged for up to 42 days. This led to the suppression of HIF-1α in the first 3 weeks due to limited oxygen supplies by RBCs. Furthermore, membrane oxidative damage, band 3 alterations, and subsequent microparticle (MP) formation were also noted. Mass spectrometric analysis revealed the upregulation of transitional endoplasmic reticulum ATPase, essential for clearing ROS-damaged membrane proteins and the protein DDI1 homolog, a proteasomal shuttle chaperone. Band 3 complex proteins and superoxide dismutase were among the downregulated proteins. Mitochondrial oxygen consumption rates measured in HPAECs incubated with RBC-derived MPs (14-day and 42-day) showed a rise in maximal respiration. Intervention strategies that target intracellular hemoglobin (Hb)'s redox transitions and membrane changes may lead to the reestablishment of oxygen homeostasis in old RBCs.

3.
J Photochem Photobiol B ; 241: 112672, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871490

RESUMO

Continued efforts to reduce the risk of transfusion-transmitted infections (TTIs) through blood and blood components led to the development of ultraviolet (UV) light irradiation technologies known as pathogen reduction technologies (PRT) to enhance blood safety. While these PRTs demonstrate germicidal efficiency, it is generally accepted that these photoinactivation techniques have limitations as they employ treatment conditions shown to compromise the quality of the blood components. During ex vivo storage, platelets having mitochondria for energy production suffer most from the consequences of UV irradiation. Recently, application of visible violet-blue light in the 400-470 nm wavelength range has been identified as a relatively more compatible alternative to UV light. Hence, in this report, we evaluated 405 nm light-treated platelets to assess alterations in energy utilization by measuring different mitochondrial bioenergetic parameters, glycolytic flux, and reactive oxygen species (ROS). Furthermore, we employed untargeted data-independent acquisition mass spectrometry to characterize platelet proteomic differences in protein regulation after the light treatment. Overall, our analyses demonstrate that ex vivo treatment of human platelets with antimicrobial 405 nm violet-blue light leads to mitochondrial metabolic reprogramming to survive the treatment, and alters a fraction of platelet proteome.


Assuntos
Anti-Infecciosos , Plaquetas , Humanos , Plaquetas/efeitos da radiação , Proteoma , Proteômica/métodos , Preservação de Sangue/métodos , Raios Ultravioleta , Anti-Infecciosos/metabolismo , Mitocôndrias/metabolismo
4.
Blood Cells Mol Dis ; 95: 102660, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35366607

RESUMO

Polymerization of deoxygenated sickle hemoglobin (HbS) leads to erythrocyte sickling. Enhancing activity of the erythrocyte glycolytic pathway has anti-sickling potential as this reduces 2,3-diphosphoglycerate (2,3-DPG) and increases ATP, factors that decrease HbS polymerization and improve erythrocyte membrane integrity. These factors can be modulated by mitapivat, which activates erythrocyte pyruvate kinase (PKR) and improves sickling kinetics in SCD patients. We investigated mechanisms by which mitapivat may impact SCD by examining its effects in the Townes SCD mouse model. Control (HbAA) and sickle (HbSS) mice were treated with mitapivat or vehicle. Surprisingly, HbSS had higher PKR protein, higher ATP, and lower 2,3-DPG levels, compared to HbAA mice, in contrast with humans with SCD, in whom 2,3-DPG is elevated compared to healthy subjects. Despite our inability to investigate 2,3-DPG-mediated sickling and hemoglobin effects, mitapivat yielded potential benefits in HbSS mice. Mitapivat further increased ATP without significantly changing 2,3-DPG or hemoglobin levels, and decreased levels of leukocytosis, erythrocyte oxidative stress, and the percentage of erythrocytes that retained mitochondria in HbSS mice. These data suggest that, even though Townes HbSS mice have increased PKR activity, further activation of PKR with mitapivat yields potentially beneficial effects that are independent of changes in sickling or hemoglobin levels.


Assuntos
Anemia Falciforme , 2,3-Difosfoglicerato/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Eritrócitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobinas/análise , Humanos , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Piperazinas , Quinolinas
5.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614003

RESUMO

The mechanistic interplay between SARS-CoV-2 infection, inflammation, and oxygen homeostasis is not well defined. Here, we show that the hypoxia-inducible factor (HIF-1α) transcriptional pathway is activated, perhaps due to a lack of oxygen or an accumulation of mitochondrial reactive oxygen species (ROS) in the lungs of adult Syrian hamsters infected with SARS-CoV-2. Prominent nuclear localization of HIF-1α and increased expression of HIF-1α target proteins, including glucose transporter 1 (Glut1), lactate dehydrogenase (LDH), and pyruvate dehydrogenase kinase-1 (PDK1), were observed in areas of lung consolidation filled with infiltrating monocytes/macrophages. Upregulation of these HIF-1α target proteins was accompanied by a rise in glycolysis as measured by extracellular acidification rate (ECAR) in lung homogenates. A concomitant reduction in mitochondrial respiration was also observed as indicated by a partial loss of oxygen consumption rates (OCR) in isolated mitochondrial fractions of SARS-CoV-2-infected hamster lungs. Proteomic analysis further revealed specific deficits in the mitochondrial ATP synthase (Atp5a1) within complex V and in the ATP/ADP translocase (Slc25a4). The activation of HIF-1α in inflammatory macrophages may also drive proinflammatory cytokine production and complement activation and oxidative stress in infected lungs. Together, these findings support a role for HIF-1α as a central mediator of the metabolic reprogramming, inflammation, and bioenergetic dysfunction associated with SARS-CoV-2 infection.


Assuntos
COVID-19 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Estresse Oxidativo , Cricetinae , COVID-19/metabolismo , Metabolismo Energético , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação , Oxigênio , Proteômica , SARS-CoV-2
6.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445747

RESUMO

SARS-CoV-2 primarily infects epithelial airway cells that express the host entry receptor angiotensin-converting enzyme 2 (ACE2), which binds to the S1 spike protein on the surface of the virus. To delineate the impact of S1 spike protein interaction with the ACE2 receptor, we incubated the S1 spike protein with human pulmonary arterial endothelial cells (HPAEC). HPAEC treatment with the S1 spike protein caused disruption of endothelial barrier function, increased levels of numerous inflammatory molecules (VCAM-1, ICAM-1, IL-1ß, CCL5, CXCL10), elevated mitochondrial reactive oxygen species (ROS), and a mild rise in glycolytic reserve capacity. Because low oxygen tension (hypoxia) is associated with severe cases of COVID-19, we also evaluated treatment with hemoglobin (HbA) as a potential countermeasure in hypoxic and normal oxygen environments in analyses with the S1 spike protein. We found hypoxia downregulated the expression of the ACE2 receptor and increased the critical oxygen homeostatic signaling protein, hypoxia-inducible factor (HIF-1α); however, treatment of the cells with HbA yielded no apparent change in the levels of ACE2 or HIF-1α. Use of quantitative proteomics revealed that S1 spike protein-treated cells have few differentially regulated proteins in hypoxic conditions, consistent with the finding that ACE2 serves as the host viral receptor and is reduced in hypoxia. However, in normoxic conditions, we found perturbed abundance of proteins in signaling pathways related to lysosomes, extracellular matrix receptor interaction, focal adhesion, and pyrimidine metabolism. We conclude that the spike protein alone without the rest of the viral components is sufficient to elicit cell signaling in HPAEC, and that treatment with HbA failed to reverse the vast majority of these spike protein-induced changes.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Células Endoteliais/metabolismo , Hemoglobinas/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/virologia , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Humanos , Subunidades Proteicas/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
7.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322551

RESUMO

The highly toxic oxidative transformation of hemoglobin (Hb) to the ferryl state (HbFe4+) is known to occur in both in vitro and in vivo settings. We recently constructed oxidatively stable human Hbs, based on the Hb Providence (ßK82D) mutation in sickle cell Hb (ßE6V/ßK82D) and in a recombinant crosslinked Hb (rHb0.1/ßK82D). Using High Resolution Accurate Mass (HRAM) mass spectrometry, we first quantified the degree of irreversible oxidation of ßCys93 in these proteins, induced by hydrogen peroxide (H2O2), and compared it to their respective controls (HbA and HbS). Both Hbs containing the ßK82D mutation showed considerably less cysteic acid formation, a byproduct of cysteine irreversible oxidation. Next, we performed a novel study aimed at exploring the impact of introducing ßK82D containing Hbs on vascular endothelial redox homeostasis and energy metabolism. Incubation of the mutants carrying ßK82D with endothelial cells resulted in altered bioenergetic function, by improving basal cellular glycolysis and glycolytic capacity. Treatment of cells with Hb variants containing ßK82D resulted in lower heme oxygenase-1 and ferritin expressions, compared to native Hbs. We conclude that the presence of ßK82D confers oxidative stability to Hb and adds significant resistance to oxidative toxicity. Therefore, we propose that ßK82D is a potential gene-editing target in the treatment of sickle cell disease and in the design of safe and effective oxygen therapeutics.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Hemoglobinas/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Oxirredução
8.
Sci Rep ; 10(1): 14218, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848178

RESUMO

Intracellular oxidative stress and oxidative modification of sickle hemoglobin (HbS) play a role in sickle cell disease (SCD) pathogenesis. Recently, we reported that Hb-dependent oxidative stress induced post-translational modifications (PTMs) of Hb and red blood cell (RBC) membrane proteins of transgenic SCD mice. To identify the mechanistic basis of these protein modifications, we followed in vitro oxidative changes occurring in intracellular Hb obtained from RBCs and RBC-derived microparticles (MPs) from the blood of 23 SCD patients (HbSS) of which 11 were on, and 12, off hydroxyurea (HU) treatment, and 5 ethnic matched controls. We used mass spectrometry-based proteomics to characterize these oxidative PTMs on a cross-sectional group of these patients (n = 4) and a separate subgroup of patients (n = 2) studied prior to initiation and during HU treatment. Collectively, these data indicated that band-3 and its interaction network involved in MPs formation exhibited more protein phosphorylation and ubiquitination in SCD patients than in controls. HU treatment reversed these oxidative PTMs back to level observed in controls. These PTMs were also confirmed using orthogonal immunoprecipitation experiments. Moreover, we observed specific markers reflective of oxidative stress, including irreversible oxidation of ßCys93 and ubiquitination of Hb ßLys145 (and ßLys96). Overall, these studies strongly suggest that extensive erythrocyte membrane protein phosphorylation and ubiquitination are involved in SCD pathogenesis and provide further insight into the multifaceted effects of HU treatment.


Assuntos
Anemia Falciforme/metabolismo , Hemoglobinas/metabolismo , Processamento de Proteína Pós-Traducional , Adulto , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Estudos de Casos e Controles , Criança , Eritrócitos/metabolismo , Feminino , Humanos , Hidroxiureia/uso terapêutico , Masculino , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Adulto Jovem
9.
Free Radic Biol Med ; 141: 348-361, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31302228

RESUMO

Cardiovascular effects were reported to occur in humans and in animal models during transfusion with hemoglobin (Hb)-based oxygen therapeutics. The effects of Hb's iron redox states on cardiac parameters during hypoxia/reoxygenation are however poorly defined. We hypothesize that acute exposures to ferric Hb during hypoxia leads to cardiomyocyte injury and an impaired left ventricular response accompanied by cardiac mitochondrial bioenergetic dysfunction. Recovery of left ventricular functions in an isolated rat heart Langendorff perfusion system was observed following perfusion with ferrous but not with ferric Hb. Ferric Hb induced the development of heart lesions, and impairment of the respiratory chain complex activity. Under normoxia, a sharp decline in cardiac parameters was observed following co-perfusion of low (20 µM) and high (100 µM) ascorbic acid (Asc) with ferrous Hb. This trend continued with ferric Hb co-perfusion, but only at the higher concentration of Asc. These observations suggest that perfusion of the hypoxic heart with ferric Hb increases oxidative stress thereby resulting in cardiac dysfunction. Intervention with Asc to reduce ferric Hb may offer a strategy to control Hb toxicity; however, timing of administration, and dosage of Asc may require individual optimization to target specific redox forms of Hb.


Assuntos
Coração/efeitos dos fármacos , Miocárdio/metabolismo , Oxigênio/farmacologia , Oxiemoglobinas/farmacologia , Animais , Ácido Ascórbico/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Coração/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hemoglobinas/metabolismo , Humanos , Hipóxia/metabolismo , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Miocárdio/patologia , Técnicas de Cultura de Órgãos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
10.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385713

RESUMO

The contribution of intracellular hemoglobin (Hb) oxidation to RBC-derived microparticle (MP) formation is poorly defined in sickle cell disease (SCD). Here we report that sickle Hb (HbS) oxidation, coupled with changes in cytosolic antioxidative proteins, is associated with membrane alterations and MP formation in homozygous Townes-sickle cell (Townes-SS) mice. Photometric and proteomic analyses confirmed the presence of high levels of Hb oxidation intermediates (ferric/ferryl) and consequent ß-globin posttranslational modifications, including the irreversible oxidation of ßCys93 and the ubiquitination of ßLys96 and ßLys145. This is the first report to our knowledge to link the UPS (via ubiquitinated Hb and other proteins) to oxidative stress. Ferryl Hb also induced complex formation with band 3 and RBC membrane proteins. Incubation of Townes-SS MPs with human endothelial cells caused greater loss of monolayer integrity, apoptotic activation, heme oxygenase-1 induction, and concomitant bioenergetic imbalance compared with control Townes-AA MPs. MPs obtained from Townes-SS mice treated with hydroxyurea produced fewer posttranslational Hb modifications. In vitro, hydroxyurea reduced the levels of ferryl Hb and shielded its target residue, ßCys93, by a process of S-nitrosylation. These mechanistic analyses suggest potential antioxidative therapeutic modalities that may interrupt MP heme-mediated pathophysiology in SCD patients.


Assuntos
Micropartículas Derivadas de Células/efeitos dos fármacos , Hemoglobinas/efeitos dos fármacos , Hidroxiureia/farmacologia , Anemia Falciforme/tratamento farmacológico , Animais , Antidrepanocíticos/farmacologia , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/efeitos dos fármacos , Metabolismo Energético , Hemoglobina Falciforme/efeitos dos fármacos , Hemoglobina Falciforme/metabolismo , Hemoglobinas/metabolismo , Humanos , Hidroxiureia/administração & dosagem , Camundongos/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteômica
11.
Bioconjug Chem ; 29(5): 1560-1575, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29570272

RESUMO

The development of hemoglobin (Hb)-based oxygen carriers (HBOCs) has been hampered because of safety concerns in humans. Chemical and/or genetic modifications of the Hb introduce varied structural and conformational constraint on the molecule that resulted in proteins with diverse allosteric responses, nitrosative and oxidative side reactions. Here, we present for the first time a comprehensive biochemical and biophysical comparison of human, bovine, and genetically engineered HBOCs that have been tested in humans. We evaluate oxygen equilibrium and ligand binding kinetics under different experimental conditions as well as their autoxidation kinetics, redox reactions, and heme release. We determined the effects of HBOCs on cellular redox states and mitochondrial respiration. Taken together, these experiments provide a better understanding of the relationship between the structure-function and oxidative reactivity of these proteins. One can therefore select independently among these diverse properties to engineer a safe and effective HBOC with improved biochemical/biophysical characteristics.


Assuntos
Substitutos Sanguíneos/química , Substitutos Sanguíneos/farmacologia , Hemoglobinas/química , Hemoglobinas/farmacologia , Animais , Substitutos Sanguíneos/efeitos adversos , Substitutos Sanguíneos/metabolismo , Monóxido de Carbono/metabolismo , Bovinos , Linhagem Celular , Heme/química , Hemoglobinas/efeitos adversos , Hemoglobinas/genética , Humanos , Cinética , Camundongos , Oxirredução , Oxigênio/metabolismo , Engenharia de Proteínas
12.
Front Physiol ; 8: 1082, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311995

RESUMO

Cell free hemoglobin (Hb), becomes oxidized in the circulation during hemolytic episodes in sickle cell disease (SCD) or thalassemia and may potentially cause major complications that are damaging to the vascular system. Hemolytic anemias are commonly associated with pulmonary hypertension (PH) and often result from dysfunction of lung endothelial cells. The aim of this study was to determine the effect of different Hbs on cultured human lung endothelial function. Toward this goal, endothelial permeability, oxidative stress response parameters, glycolytic and mitochondrial bioenergetic functions were monitored in cultured human pulmonary arterial endothelial cells (HPAEC) following incubation with human adult Hb (HbA), and Hb isolated from patients with sickle cell Hb (HbS, ßV6E) and HbE (ßE26K) that commonly co-exist with ß-thalassemia. These mutant Hbs are known for their distinct oxidative profiles. HPAEC treated with the ferrous forms of HbE, HbS for 24 h showed higher loss of endothelial monolayer integrity with concomitant rise in reactive oxygen radical production, lipid hydroperoxide formation and higher expressions of oxidative stress response proteins including heme oxygenase-1 (HO-1) accompanied by a rise in uncoupled mitochondrial respiration. Loss of membrane permeability was diminished in part by haptoglobin (Hp, protein scavenger), hemopexin (Hpx, heme scavenger) or ascorbate (reducing agent). To understand the role of Hb oxidation, HPAEC were exposed to ferric or ferryl states of the mutant Hbs. Ferryl forms of all proteins caused a significant damage to the endothelial monolayer integrity at a higher degree than their respective ferric Hbs. Ferryl forms of HbS and HbE also caused a loss of respiratory chain complex activities in isolated endothelial mitochondria and basal oxygen consumption in HPAEC. However, longer incubation with ferryl Hbs produced bioenergetic reprogramming including higher degree of uncoupled respiration and glycolytic rate. The data in this report collectively indicate that higher oxidation forms of HbS and HbE cause endothelial dysfunction through distinct damaging mechanisms involving mitochondrial bioenergetic function.

13.
FEBS Open Bio ; 6(9): 876-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27642551

RESUMO

Despite advances in our understanding of the oxidative pathways mediated by free hemoglobin (Hb), the precise contribution of its highly reactive redox forms to tissue and organ toxicities remains ambiguous. Heme, a key degradation byproduct of Hb oxidation, has recently been recognized as a damage-associated molecular pattern (DAMP) molecule, able to trigger inflammatory responses. Equally damaging is the interaction of the highly redox active forms of Hb with other biological molecules. We determined the kinetics of heme loss from individual Hb redox states-ferrous (Fe(2+)), ferric (Fe(3+)), and ferryl (Fe(4+))-using two different heme receptor proteins: hemopexin (Hxp), a naturally occurring heme scavenger in plasma, and a double mutant (H64Y/V86F), apomyoglobin (ApoMb), which avidly binds heme released from Hb. We show for the first time that ferric Hb (Fe(3+)) loses heme at rates substantially higher than that of ferryl Hb (Fe(4+)). This was also supported by a higher expression of heme oxygenase-1 (HO-1) when ferric Hb was added to cultured lung alveolar epithelial cells (E10). The reported cytotoxicity of Hb may therefore be attributed to a combination of accelerated heme loss from the ferric form and protein radical formation associated with ferryl Hb. Targeted therapeutic interventions can therefore be designed to curb specific oxidative pathways of Hb in hemolytic anemias and when Hb is used as an oxygen-carrying therapeutic.

14.
Am J Respir Cell Mol Biol ; 55(2): 288-98, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26974230

RESUMO

Lung alveoli are lined by alveolar type (AT) 1 cells and cuboidal AT2 cells. The AT1 cells are likely to be exposed to cell-free hemoglobin (Hb) in multiple lung diseases; however, the role of Hb redox (reduction-oxidation) reactions and their precise contributions to AT1 cell injury are not well understood. Using mouse lung epithelial cells (E10) as an AT1 cell model, we demonstrate here that higher Hb oxidation states, ferric Hb (HbFe(3+)) and ferryl Hb (HbFe(4+)) and subsequent heme loss play a central role in the genesis of injury. Exposures to HbFe(2+) and HbFe(3+) for 24 hours induced expression of heme oxygenase (HO)-1 protein in E10 cells and HO-1 translocation in the purified mitochondrial fractions. Both of these effects were intensified with increasing oxidation states of Hb. Next, we examined the effects of Hb oxidation and free heme on mitochondrial bioenergetic function by measuring changes in the mitochondrial transmembrane potential and oxygen consumption rate. In contrast to HbFe(2+), HbFe(3+) reduced basal oxygen consumption rate, indicating compromised mitochondrial activity. However, HbFe(4+) exposure not only induced early expression of HO-1 but also caused mitochondrial dysfunction within 12 hours when compared with HbFe(2+) and HbFe(3+). Exposure to HbFe(4+) for 24 hours also caused mitochondrial depolarization in E10 cells. The deleterious effects of HbFe(3+) and HbFe(4+) were reversed by the addition of scavenger proteins, haptoglobin and hemopexin. Collectively, these data establish, for the first time, a central role for cell-free Hb in lung epithelial injury, and that these effects are mediated through the redox transition of Hb to higher oxidation states.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Hemoglobinas/farmacologia , Ferro/metabolismo , Mitocôndrias/metabolismo , Adulto , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Linhagem Celular , Heme Oxigenase-1/metabolismo , Hemoglobinas/isolamento & purificação , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
J Biol Chem ; 290(46): 27939-58, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26396189

RESUMO

Polymerization of intraerythrocytic deoxyhemoglobin S (HbS) is the primary molecular event that leads to hemolytic anemia in sickle cell disease (SCD). We reasoned that HbS may contribute to the complex pathophysiology of SCD in part due to its pseudoperoxidase activity. We compared oxidation reactions and the turnover of oxidation intermediates of purified human HbS and HbA. Hydrogen peroxide (H2O2) drives a catalytic cycle that includes the following three distinct steps: 1) initial oxidation of ferrous (oxy) to ferryl Hb; 2) autoreduction of the ferryl intermediate to ferric (metHb); and 3) reaction of metHb with an additional H2O2 molecule to regenerate the ferryl intermediate. Ferrous and ferric forms of both proteins underwent initial oxidation to the ferryl heme in the presence of H2O2 at equal rates. However, the rate of autoreduction of ferryl to the ferric form was slower in the HbS solutions. Using quantitative mass spectrometry and the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide, we found more irreversibly oxidized ßCys-93in HbS than in HbA. Incubation of the ferric or ferryl HbS with cultured lung epithelial cells (E10) induced a drop in mitochondrial oxygen consumption rate and impairment of cellular bioenergetics that was related to the redox state of the iron. Ferryl HbS induced a substantial drop in the mitochondrial transmembrane potential and increases in cytosolic heme oxygenase (HO-1) expression and mitochondrial colocalization in E10 cells. Thus, highly oxidizing ferryl Hb and heme, the product of oxidation, may be central to the evolution of vasculopathy in SCD and may suggest therapeutic modalities that interrupt heme-mediated inflammation.


Assuntos
Cisteína/química , Hemoglobina Falciforme/química , Ferro/química , Mitocôndrias/metabolismo , Mucosa Respiratória/enzimologia , Anemia Hemolítica/enzimologia , Anemia Falciforme/enzimologia , Catálise , Óxidos N-Cíclicos/química , Metabolismo Energético , Heme/química , Heme Oxigenase (Desciclizante)/química , Humanos , Peróxido de Hidrogênio/química , Pulmão/enzimologia , Metemoglobina/química , Oxirredução , Consumo de Oxigênio , Mucosa Respiratória/ultraestrutura
16.
J Biol Chem ; 287(29): 24387-96, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22532564

RESUMO

Because human prostate-distributed UDP-glucuronosyltransferase (UGT) 2B15 metabolizes 5α-dihydrotestosterone (DHT) and 3α-androstane-5α,17ß-diol metabolite, we sought to determine whether 2B15 requires regulated phosphorylation similar to UGTs already analyzed. Reversible down-regulation of 2B15-transfected COS-1 cells following curcumin treatment and irreversible inhibition by calphostin C, bisindolylmaleimide, or röttlerin treatment versus activation by phorbol 12-myristate 13-acetate indicated that 2B15 undergoes PKC phosphorylation. Mutation of three predicted PKC and two tyrosine kinase sites in 2B15 caused 70-100 and 80-90% inactivation, respectively. Anti-UGT-1168 antibody trapped 2B15-His-containing co-immunoprecipitates of PKCα in 130-140- and >150-kDa complexes by gradient SDS-PAGE analysis. Complexes bound to WT 2B15-His remained intact during electrophoresis, whereas 2B15-His mutants at phosphorylation sites differentially dissociated. PKCα siRNA treatment inactivated >50% of COS-1 cell-expressed 2B15. In contrast, treatment of 2B15-transfected COS-1 cells with the Src-specific activator 1,25-dihydroxyvitamin D(3) enhanced activity; treatment with the Src-specific PP2 inhibitor or Src siRNA inhibited >50% of the activity. Solubilized 2B15-His-transfected Src-free fibroblasts subjected to in vitro [γ-(33)P]ATP-dependent phosphorylation by PKCα and/or Src, affinity purification, and SDS gel analysis revealed 2-fold more radiolabeling of 55-58-kDa 2B15-His by PKCα than by Src; labeling was additive for combined kinases. Collectively, the evidence indicates that 2B15 requires regulated phosphorylation by both PKCα and Src, which is consistent with the complexity of synthesis and metabolism of its major substrate, DHT. Whether basal cells import or synthesize testosterone for transport to luminal cells for reduction to DHT by 5α-steroid reductase 2, comparatively low-activity luminal cell 2B15 undergoes a complex pattern of regulated phosphorylation necessary to maintain homeostatic DHT levels to support occupation of the androgen receptor for prostate-specific functions.


Assuntos
Di-Hidrotestosterona/metabolismo , Glucuronosiltransferase/metabolismo , Proteína Quinase C-alfa/metabolismo , Quinases da Família src/metabolismo , Animais , Células COS , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/genética , Humanos , Imunoprecipitação , Masculino , Camundongos , Mutação , Fosforilação/genética , Fosforilação/fisiologia , Ligação Proteica , Proteína Quinase C-alfa/antagonistas & inibidores , Quinases da Família src/genética
17.
Biochim Biophys Acta ; 1812(6): 663-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21377526

RESUMO

The study has demonstrated that dopamine induces membrane depolarization and a loss of phosphorylation capacity in dose-dependent manner in isolated rat brain mitochondria during extended in vitro incubation and the phenomena are not prevented by oxyradical scavengers or metal chelators. Dopamine effects on brain mitochondria are, however, markedly prevented by reduced glutathione and N-acetyl cysteine and promoted by tyrosinase present in the incubation medium. The results imply that quinone oxidation products of dopamine are involved in mitochondrial damage under this condition. When PC12 cells are exposed to dopamine in varying concentrations (100-400µM) for up to 24h, a pronounced impairment of mitochondrial bio-energetic functions at several levels is observed along with a significant (nearly 40%) loss of cell viability with features of apoptotic nuclear changes and increased activities of caspase 3 and caspase 9 and all these effects of dopamine are remarkably prevented by N-acetyl cysteine. N-acetyl cysteine also blocks nearly completely the dopamine induced increase in reactive oxygen species production and the formation of quinoprotein adducts in mitochondrial fraction within PC12 cells and also the accumulation of quinone products in the culture medium. Clorgyline, an inhibitor of MAO-A, markedly decreases the formation of reactive oxygen species in PC12 cells upon dopamine exposure but has only mild protective actions against quinoprotein adduct formation, mitochondrial dysfunctions, cell death and caspase activation induced by dopamine. The results have indicated that quinone oxidation products and not reactive oxygen species are primarily involved in cytotoxic effects of dopamine and the mitochondrial impairment plays a central role in the latter process. The data have clear implications in the pathogenesis of Parkinson's disease.


Assuntos
Dopamina/toxicidade , Mitocôndrias/efeitos dos fármacos , Doença de Parkinson/etiologia , Quinonas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Caspases/metabolismo , Dopamina/metabolismo , Metabolismo Energético/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Células PC12 , Doença de Parkinson/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
FEBS Lett ; 584(8): 1571-6, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20226185

RESUMO

This study demonstrates that in vitro incubation of isolated rat brain mitochondria with recombinant human alpha-synuclein leads to dose-dependent loss of mitochondrial transmembrane potential and phosphorylation capacity. However, alpha-synuclein does not seem to have any significant effect on the activities of respiratory chain complexes under similar conditions of incubation suggesting that the former may impair mitochondrial bioenergetics by direct effect on mitochondrial membranes. Moreover, the recombinant wild type alpha-synuclein and different mutant forms (A30P, A53T and E46K) have essentially similar effects on rat brain isolated mitochondria. The results are significant in view of the fact that alpha-synucleinopathy is involved in the pathogenesis of Parkinson's disease.


Assuntos
Encéfalo/citologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/farmacologia , Animais , Encéfalo/patologia , Relação Dose-Resposta a Droga , Transporte de Elétrons/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mutação , Doença de Parkinson/patologia , Fosforilação/efeitos dos fármacos , Ratos , alfa-Sinucleína/genética
19.
Free Radic Res ; 42(6): 574-81, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18569015

RESUMO

Dopamine oxidation products such as H2O2 and reactive quinones have been held responsible for various toxic actions of dopamine, which have implications in the aetiopathogenesis of Parkinson's disease. This study has shown that N-acetylcysteine (0.25-1 mm) is a potent scavenger of both H2O2 and toxic quinones derived from dopamine and it further prevents dopamine mediated inhibition of Na+,K+-ATPase activity and mitochondrial respiratory chain function. The quinone scavenging ability of N-acetylcysteine is presumably related to its protective effect against dopamine mediated inhibition of mitochondrial respiratory chain activity. However, both H2O2 scavenging and quinone scavenging properties of N-acetylcysteine probably account for its protective effect against Na+,K+-ATPase inhibition induced by dopamine. The results have important implications in the neuroprotective therapy of sporadic Parkinson's disease since inactivation of mitochondrial respiratory activity and Na+,K+-ATPase may trigger intracellular damage pathways leading to the death of nigral dopaminergic neurons.


Assuntos
Acetilcisteína/farmacologia , Benzoquinonas/química , Encéfalo/metabolismo , Radicais Livres , ATPase Trocadora de Sódio-Potássio/fisiologia , Trifosfato de Adenosina/química , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Sequestradores de Radicais Livres/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , ATPase Trocadora de Sódio-Potássio/química
20.
Neurochem Int ; 50(5): 719-25, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17331620

RESUMO

A noticeable loss of cardiolipin, a significant accumulation of fluorescent products of lipid peroxidation and an increased ability to produce reactive oxygen species in vitro are characteristics of aged rat brain mitochondria, as has been demonstrated in this study. In contrast mitochondrial electron transport chain activity is not significantly compromised except a marginal decline in complex IV activity in aged rat brain. On the other hand, a striking loss of mitochondrial membrane potential occurs in brain mitochondria during aging, which may be attributed to peroxidative membrane damage in this condition. Such mitochondrial dysfunctions as reported here may lead to uncoupling of oxidative phosphorylation, ATP depletion and activation of apoptotic cascade in aged rat brain.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Cardiolipinas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Feminino , Masculino , Potenciais da Membrana , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...