Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurovirol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922550

RESUMO

The cellular prion protein (PrPC) is an extracellular cell membrane protein. Due to its diversified roles, a definite role of PrPC has been difficult to establish. During viral infection, PrPC has been reported to play a pleiotropic role. Here, we have attempted to envision the function of PrPC in the neurotropic m-CoV-MHV-RSA59-induced model of neuroinflammation in C57BL/6 mice. A significant upregulation of PrPC at protein and mRNA levels was evident in infected mouse brains during the acute phase of neuroinflammation. Furthermore, investigation of the effect of MHV-RSA59 infection on PrPC expression in specific neuronal, microglial, and astrocytoma cell lines, revealed a differential expression of prion protein during neuroinflammation. Additionally, siRNA-mediated downregulation of prnp transcripts reduced the expression of viral antigen and viral infectivity in these cell lines. Cumulatively, our results suggest that PrPC expression significantly increases during acute MHV-RSA59 infection and that PrPC also assists in viral infectivity and viral replication.

2.
ACS Appl Bio Mater ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38939951

RESUMO

In order to treat most vascular diseases, arterial grafts are commonly employed for replacing small-diameter vessels, yet they often cause thrombosis. The growth of endothelial cells along the interior surfaces of these grafts (substrates) is critical to mitigate thrombosis. Typically, endothelial cells are cultured inside these grafts under laminar flow conditions to emulate the native environment of blood vessels and produce an endothelium. Alternatively, the substrate structure could have a similar influence on endothelial cell behavior as laminar flow conditions. In this study, we investigated whether substrates with aligned fiber structures could induce responses in human umbilical vein endothelial cells (HUVECs) akin to those elicited by laminar flow. Our observations revealed that HUVECs on aligned substrates displayed significant morphological changes, aligning parallel to the fibers, similar to effects reported under laminar flow conditions. Conversely, HUVECs on random substrates maintained their characteristic cobblestone appearance. Notably, cell migration was more significant on aligned substrates. Also, we observed that while vWF expression was similar between both substrates, the HUVECs on aligned substrates showed more expression of platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31), laminin, and collagen IV. Additionally, these cells exhibited increased gene expression related to critical functions such as proliferation, extracellular matrix production, cytoskeletal reorganization, autophagy, and antithrombotic activity. These findings indicated that aligned substrates enhanced endothelial growth and behavior compared to random substrates. These improvements are similar to the beneficial effects of laminar flow on endothelial cells, which are well-documented compared to static or turbulent flow conditions.

3.
Prog Mater Sci ; 1392023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37981978

RESUMO

The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.

4.
iScience ; 26(9): 107683, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680485

RESUMO

Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb2O3 core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life ß-radiation from 175Yb, 177Yb, and 177Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the ß-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications.

5.
Biotechnol Bioeng ; 120(6): 1678-1693, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891782

RESUMO

Efficient cell seeding and subsequent support from a substrate ensure optimal cell growth and neotissue development during tissue engineering, including heart valve tissue engineering. Fibrin gel as a cell carrier may provide high cell seeding efficiency and adhesion property, improved cellular interaction, and structural support to enhance cellular growth in trilayer polycaprolactone (PCL) substrates that mimic the structure of native heart valve leaflets. This cell carrier gel coupled with a trilayer PCL substrate may enable the production of native-like cell-cultured leaflet constructs suitable for heart valve tissue engineering. In this study, we seeded valvular interstitial cells onto trilayer PCL substrates with fibrin gel as a cell carrier and cultured them for 1 month in vitro to determine if this gel can improve cell proliferation and production of extracellular matrix within the trilayer cell-cultured constructs. We observed that the fibrin gel enhanced cellular proliferation, their vimentin expression, and collagen and glycosaminoglycan production, leading to improved structure and mechanical properties of the developing PCL cell-cultured constructs. Fibrin gel as a cell carrier significantly improved the orientations of the cells and their produced tissue materials within trilayer PCL substrates that mimic the structure of native heart valve leaflets and, thus, may be highly beneficial for developing functional tissue-engineered leaflet constructs.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Fibrina , Valva Aórtica , Células Cultivadas , Engenharia Tecidual , Alicerces Teciduais/química
6.
ACS Biomater Sci Eng ; 9(3): 1570-1584, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36802499

RESUMO

Heart valve leaflets have a complex trilayered structure with layer-specific orientations, anisotropic tensile properties, and elastomeric characteristics that are difficult to mimic collectively. Previously, trilayer leaflet substrates intended for heart valve tissue engineering were developed with nonelastomeric biomaterials that cannot deliver native-like mechanical properties. In this study, by electrospinning polycaprolactone (PCL) polymer and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer, we created elastomeric trilayer PCL/PLCL leaflet substrates with native-like tensile, flexural, and anisotropic properties and compared them with trilayer PCL leaflet substrates (as control) to find their effectiveness in heart valve leaflet tissue engineering. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for 1 month in static conditions to produce cell-cultured constructs. The PCL/PLCL substrates had lower crystallinity and hydrophobicity but higher anisotropy and flexibility than PCL leaflet substrates. These attributes contributed to more significant cell proliferation, infiltration, extracellular matrix production, and superior gene expression in the PCL/PLCL cell-cultured constructs than in the PCL cell-cultured constructs. Further, the PCL/PLCL constructs showed better resistance to calcification than PCL constructs. Trilayer PCL/PLCL leaflet substrates with native-like mechanical and flexural properties could significantly improve heart valve tissue engineering.


Assuntos
Estenose da Valva Aórtica , Calcinose , Suínos , Animais , Engenharia Tecidual , Alicerces Teciduais/química , Valva Aórtica , Células Cultivadas , Polímeros/química
7.
Biomed Mater ; 17(6)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36150373

RESUMO

Heart valve leaflet substrates with native trilayer and anisotropic structures are crucial for successful heart valve tissue engineering. In this study, we used the electrospinning technique to produce trilayer microfibrous leaflet substrates using two biocompatible and biodegradable polymers-poly (L-lactic acid) (PLLA) and polycaprolactone (PCL), separately. Different polymer concentrations for each layer were applied to bring a high degree of mechanical and structural anisotropy to the substrates. PCL leaflet substrates exhibited lower unidirectional tensile properties than PLLA leaflet substrates. However, the PLLA substrates exhibited a lower flexural modulus than the PCL substrates. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for one month in static conditions. Both substrates exhibited cellular adhesion and proliferation, resulting in the production of tissue-engineered constructs. The PLLA tissue-engineered constructs had more cellular growth than the PCL tissue-engineered constructs. The PLLA substrates showed higher hydrophilicity, lower crystallinity, and more significant anisotropy than PCL substrates, which may have enhanced their interactions with PVICs. Analysis of gene expression showed higherα-smooth muscle actin and collagen type 1 expression in PLLA tissue-engineered constructs than in PCL tissue-engineered constructs. The differences in anisotropic and flexural properties may have accounted for the different cellular behaviors in these two individual polymer substrates.


Assuntos
Estenose da Valva Aórtica , Calcinose , Actinas , Animais , Anisotropia , Valva Aórtica , Células Cultivadas , Colágeno/química , Ácido Láctico/química , Poliésteres/química , Polímeros/química , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Biomaterials ; 288: 121675, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953330

RESUMO

Valvular heart diseases (VHDs) are currently treated using either mechanical or bioprosthetic heart valves. Unfortunately, mechanical valves require lifelong anticoagulation therapy, and bioprosthetic valves calcify and degrade over time, requiring subsequent valve replacement surgeries. Besides, both valves cannot grow with patients. Heart valve tissue engineering uses scaffolds as valve replacements with the potential to grow with patents, function indefinitely, and not require anticoagulation medication. These scaffolds provide three-dimensional supports for cellular adhesion and growth, leading to tissue formation and, finally, a new functional heart valve development. Heart valve scaffolds are made of either polymeric materials or decellularized tissue obtained from allogeneic or xenogeneic sources. This review discusses processes for preparing decellularized heart valve scaffolds, including decellularization, crosslinking, surface-coating, and sterilization. We also examine the predominant issues in scaffold development. Further, decellularized heart valve scaffold function in vitro and in vivo is evaluated.


Assuntos
Bioprótese , Doenças das Valvas Cardíacas , Próteses Valvulares Cardíacas , Adesão Celular , Valvas Cardíacas , Humanos , Polímeros , Engenharia Tecidual/métodos , Alicerces Teciduais
9.
Appl Mater Today ; 242021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34485682

RESUMO

Tissue-engineered heart valves are a promising alternative solution to prosthetic valves. However, long-term functionalities of tissue-engineered heart valves depend on the ability to mimic the trilayered, oriented structure of native heart valve leaflets. In this study, using electrospinning, we developed trilayered microfibrous leaflet substrates with morphological characteristics similar to native leaflets. The substrates were implanted subcutaneously in rats to study the effect of their trilayered oriented structure on in vivo tissue engineering. The tissue constructs showed a well-defined structure, with a circumferentially oriented layer, a randomly oriented layer and a radially oriented layer. The extracellular matrix, produced during in vivo tissue engineering, consisted of collagen, glycosaminoglycans, and elastin, all major components of native leaflets. Moreover, the anisotropic tensile properties of the constructs were sufficient to bear the valvular physiological load. Finally, the expression of vimentin and α-smooth muscle actin, at the gene and protein level, was detected in the residing cells, revealing their growing state and their transdifferentiation to myofibroblasts. Our data support a critical role for the trilayered structure and anisotropic properties in functional leaflet tissue constructs, and indicate that the leaflet substrates have the potential for the development of valve scaffolds for heart valve replacements.

10.
ACS Appl Bio Mater ; 4(11): 7836-7847, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35006765

RESUMO

Mechanical and bioprosthetic valves that are currently applied for replacing diseased heart valves are not fully efficient. Heart valve tissue engineering may solve the issues faced by the prosthetic valves in heart valve replacement. The leaflets of native heart valves have a trilayered structure with layer-specific orientations; thus, it is imperative to develop functional leaflet tissue constructs with a native trilayered, oriented structure. Its key solution is to develop leaflet scaffolds with a native morphology and structure. In this study, microfibrous leaflet scaffolds with a native trilayered and oriented structure were developed in an electrospinning system. The scaffolds were implanted for 3 months in rats subcutaneously to study the scaffold efficiencies in generating functional tissue-engineered leaflet constructs. These in vivo tissue-engineered leaflet constructs had a trilayered, oriented structure similar to native leaflets. The tensile properties of constructs indicated that they were able to endure the hydrodynamic load of the native heart valve. Collagen, glycosaminoglycans, and elastin─the predominant extracellular matrix components of native leaflets─were found sufficiently in the leaflet tissue constructs. The residing cells in the leaflet tissue constructs showed vimentin and α-smooth muscle actin expression, i.e., the constructs were in a growing state. Thus, the trilayered, oriented fibrous leaflet scaffolds produced in this study could be useful to develop heart valve scaffolds for successful heart valve replacements.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Colágeno/química , Glicosaminoglicanos/química , Valvas Cardíacas/anatomia & histologia , Ratos , Alicerces Teciduais/química
11.
Cell Tissue Res ; 382(2): 321-335, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32676860

RESUMO

A tissue-engineered heart valve can be an alternative to a prosthetic valve in heart valve replacement; however, it is not fully efficient in terms of long-lasting functionality, as leaflets in engineered valves do not possess the trilayered native leaflet structure. Previously, we developed a flat, trilayered, oriented nanofibrous (TN) scaffold mimicking the trilayered structure and orientation of native heart valve leaflets. In vivo tissue engineering-a practical regenerative medicine technology-can be used to develop an autologous heart valve. Thus, in this study, we used our flat, trilayered, oriented nanofibrous scaffolds to develop trilayered tissue structures with native leaflet orientations through in vivo tissue engineering in a rat model. After 2 months of in vivo tissue engineering, infiltrated cells and their deposited collagen fibrils were found aligned in the circumferential and radial layers, and randomly oriented in the random layer of the scaffolds, i.e., trilayered tissue constructs (TTCs) were developed. Tensile properties of the TTCs were higher than that of the control tissue constructs (without any scaffolds) due to influence of fibers of the scaffolds in tissue engineering. Different extracellular matrix proteins-collagen, glycosaminoglycans, and elastin-that exist in native leaflets were observed in the TTCs. Gene expression of the TTCs indicated that the tissue constructs were in growing stage. There was no sign of calcification in the tissue constructs. The TTCs developed with the flat TN scaffolds indicate that an autologous leaflet-shaped, trilayered tissue construct that can function as a native leaflet can be developed.


Assuntos
Valvas Cardíacas/fisiopatologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Ratos
12.
Regen Med ; 15(1): 1177-1192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32100626

RESUMO

Aim: We aimed to develop a leaflet-shaped trilayered tissue construct mimicking the morphology of native heart valve leaflets. Materials & methods: Electrospinning and in vivo tissue engineering methods were employed. Results: We developed leaflet-shaped microfibrous scaffolds, each with circumferentially, randomly and radially oriented three layers mimicking the trilayered, oriented structure of native leaflets. After 3 months in vivo tissue engineering with the scaffolds, the generated leaflet-shaped tissue constructs had a trilayered structure mimicking the orientations of native heart valve leaflets. Presence of collagen, glycosaminoglycans and elastin seen in native leaflets was observed in the engineered tissue constructs. Conclusion: Trilayered, oriented fibrous scaffolds brought the orientations of the infiltrated cells and their produced extracellular matrix proteins into the constructs.


Assuntos
Doenças das Valvas Cardíacas/terapia , Implante de Prótese de Valva Cardíaca/métodos , Próteses Valvulares Cardíacas , Valvas Cardíacas/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Colágeno/química , Glicosaminoglicanos/química , Polímeros/química , Ratos , Ratos Sprague-Dawley
13.
Biomed Mater ; 15(1): 015004, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31814596

RESUMO

A tissue-engineered heart valve can be an alternative to current mechanical or bioprosthetic valves that face limitations, especially in pediatric patients. However, it remains challenging to produce a functional tissue-engineered heart valve with three leaflets mimicking the trilayered, oriented structure of a native valve leaflet. In our previous study, a flat, trilayered nanofibrous substrate mimicking the orientations of three layers in a native leaflet-circumferential, random and radial orientations in fibrosa, spongiosa and ventricularis layers, respectively, was developed through electrospinning. In this study, we sought to develop a trilayered tissue structure mimicking the orientations of a native valve leaflet through in vivo tissue engineering, a practical regenerative medicine technology that can be used to develop an autologous heart valve. Thus, the nanofibrous substrate was placed inside the closed trileaflet-shaped cavity of a mold and implanted subcutaneously in a rat model for in vivo tissue engineering. After two months, the explanted tissue construct had a trilayered structure mimicking the orientations of a native valve leaflet. The infiltrated cells and their deposited collagen fibrils were oriented along the nanofibers in each layer of the substrate. Besides collagen, presence of glycosaminoglycans and elastin in the construct was observed.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Valvas Cardíacas/anatomia & histologia , Valvas Cardíacas/fisiologia , Engenharia Tecidual/métodos , Animais , Autoenxertos , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Colágeno/química , Colágeno/ultraestrutura , Humanos , Teste de Materiais , Nanofibras/química , Nanofibras/ultraestrutura , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa/métodos , Resistência à Tração , Alicerces Teciduais/química
14.
Biomed Mater ; 14(6): 065014, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31593551

RESUMO

Pore size is generally small in nanofibrous scaffolds prepared by electrospinning polymeric solutions. Increase of scaffold thickness leads to decrease in pore size, causing impediment to cell infiltration into the scaffolds during tissue engineering. In contrast, comparatively larger pore size can be realized in microfibrous scaffolds prepared from polymeric solutions at higher concentrations. Further, microfibrous scaffolds are conducive to infiltration of reparative M2 phenotype macrophages during in vivo/in situ tissue engineering. However, rise of mechanical properties of a fibrous scaffold with the increase of polymer concentration may limit the functionality of a scaffold-based, tissue-engineered heart valve. In this study, we developed microfibrous scaffolds from 14%, 16% and 18% (wt/v) polycaprolactone (PCL) polymer solutions prepared with chloroform solvent. Porcine valvular interstitial cells were cultured in the scaffolds for 14 d to investigate the effect of microfibers prepared with different PCL concentrations on the seeded cells. Further, fresh microfibrous scaffolds were implanted subcutaneously in a rat model for two months to investigate the effect of microfibers on infiltrated cells. Cell proliferation, and its morphologies, gene expression and deposition of different extracellular matrix proteins in the in vitro study were characterized. During the in vivo study, we characterized cell infiltration, and myofibroblast and M1/M2 phenotypes expression of the infiltrated cells. Among different PCL concentrations, microfibrous scaffolds from 14% solution were suitable for heart valve tissue engineering for their sufficient pore size and low but adequate tensile properties, which promoted cell adhesion to and proliferation in the scaffolds, and effective gene expression and extracellular matrix deposition by the cells in vitro. They also encouraged the cells in vivo for their infiltration and effective gene expression, including M2 phenotype expression.


Assuntos
Valva Aórtica/crescimento & desenvolvimento , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Estenose da Valva Aórtica/patologia , Calcinose , Adesão Celular , Proliferação de Células , Células Cultivadas , Colágeno/química , Elastina/química , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Polímeros/química , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Suínos , Resistência à Tração , Vimentina/metabolismo
15.
Acta Biomater ; 99: 53-71, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31454565

RESUMO

Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.


Assuntos
Prótese Vascular , Células Endoteliais/citologia , Endotélio Vascular/crescimento & desenvolvimento , Próteses Valvulares Cardíacas , Adsorção , Animais , Materiais Biocompatíveis , Bioprótese , Adesão Celular , Movimento Celular , Proliferação de Células , Terapia Genética , Humanos , Stents , Propriedades de Superfície , Engenharia Tecidual , Enxerto Vascular
16.
Acta Biomater ; 85: 142-156, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528607

RESUMO

Heart valve tissue engineering could be an alternative to the current bioprosthetic heart valve that faces limitations especially in pediatric patients. However, heart valve tissue engineering has remained challenging because leaflets - the primary component of a heart valve - have three layers with three diverse orientations - circumferential, random and radial, respectively. In order to mimic the orientations, we first designed three novel collectors to fabricate three nanofibrous layers with those orientations from a polymeric biomaterial in an electrospinning system. Then, we devised a novel direct electrospinning technique to develop a unified trilayered nanofibrous (TN) substrate comprising those oriented layers. The TN substrate supported the growth and orientations of seeded porcine valvular interstitial cells (PVICs) and their deposited collagen fibrils. After one month culture, the obtained trilayered tissue construct (TC) exhibited increased tensile properties over its TN substrate. Most importantly, the developed TC did not show any sign of shrinkage. Gene expression pattern of the PVICs indicated the developing stage of the TC. Their protein expression pattern was quite similar to that of leaflets. STATEMENT OF SIGNIFICANCE: This manuscript talks about development of a novel trilayered nanofibrous substrate mimicking the morphologies of a heart valve leaflet. It also describes culturing of valvular interstitial cells that reside in a leaflet, in the substrate and compares the behavior of the cultured cells with that in native leaflets in terms cell morphology, protein deposition and its orientation, and molecular signature. This study builds the groundwork for our future trilayered, tissue-engineered leaflet development. This research article would be of great interest to investigators and researchers in the field of cardiovascular tissue engineering especially in cardiac valve tissue engineering through biomaterial-based tissue engineering.


Assuntos
Valvas Cardíacas/anatomia & histologia , Valvas Cardíacas/citologia , Nanofibras/química , Animais , Proliferação de Células , Forma Celular , Sobrevivência Celular , Colágeno/química , Regulação da Expressão Gênica , Valvas Cardíacas/ultraestrutura , Humanos , Nanofibras/toxicidade , Nanofibras/ultraestrutura , Sus scrofa , Resistência à Tração , Alicerces Teciduais/química
17.
J Tissue Eng Regen Med ; 12(7): 1608-1620, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29749108

RESUMO

Fixed pericardial tissue is commonly used for commercially available xenograft valve implants, and has proven durability, but lacks the capability to remodel and grow. Decellularized porcine pericardial tissue has the promise to outperform fixed tissue and remodel, but the decellularization process has been shown to damage the collagen structure and reduce mechanical integrity of the tissue. Therefore, a comparison of uniaxial tensile properties was performed on decellularized, decellularized-sterilized, fixed, and native porcine pericardial tissue versus native valve leaflet cusps. The results of non-parametric analysis showed statistically significant differences (p < .05) between the stiffness of decellularized versus native pericardium and native cusps as well as fixed tissue, respectively; however, decellularized tissue showed large increases in elastic properties. Porosity testing of the tissues showed no statistical difference between decellularized and decell-sterilized tissue compared with native cusps (p > .05). Scanning electron microscopy confirmed that valvular endothelial and interstitial cells colonized the decellularized pericardial surface when seeded and grown for 30 days in static culture. Collagen assays and transmission electron microscopy analysis showed limited reductions in collagen with processing; yet glycosaminoglycan assays showed great reductions in the processed pericardium relative to native cusps. Decellularized pericardium had comparatively low mechanical properties among the groups studied; yet the stiffness was comparatively similar to the native cusps and demonstrated a lack of cytotoxicity. Suture retention, accelerated wear, and hydrodynamic testing of prototype decellularized and decell-sterilized valves showed positive functionality. Sterilized tissue could mimic valvular mechanical environment in vitro, therefore making it a viable potential candidate for off-the-shelf tissue-engineered valvular applications.


Assuntos
Materiais Biocompatíveis/química , Bioprótese , Próteses Valvulares Cardíacas , Teste de Materiais , Pericárdio/química , Animais , Células Cultivadas , Suínos , Engenharia Tecidual
18.
Acta Histochem ; 120(3): 282-291, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29519681

RESUMO

OBJECTIVES: Subcutaneous implantations in small animal models are currently required for preclinical studies of acellular tissue to evaluate biocompatibility, including host recellularization and immunogenic reactivity. METHODS: Three rat subcutaneous implantation methods were evaluated in six Sprague Dawley rats. An acellular xenograft made from porcine pericardium was used as the tissue-scaffold. Three implantation methods were performed; 1) Suture method is where a tissue-scaffold was implanted by suturing its border to the external oblique muscle, 2) Control method is where a tissue-scaffold was implanted without any suturing or support, 3) Frame method is where a tissue-scaffold was attached to a circular frame composed of polycaprolactone (PCL) biomaterial and placed subcutaneously. After 1 and 4 weeks, tissue-scaffolds were explanted and evaluated by hematoxylin and eosin (H&E), Masson's trichrome,Picrosirius Red, transmission electron microscopy (TEM), immunohistochemistry, and mechanical testing. RESULTS: Macroscopically, tissue-scaffold degradation with the suture method and tissue-scaffold folding with the control method were observed after 4 weeks. In comparison, the frame method demonstrated intact tissue scaffolds after 4 weeks. H&E staining showed progressive cell repopulation over the course of the experiment in all groups with acute and chronic inflammation observed in suture and control methods throughout the duration of the study. Immunohistochemistry quantification of CD3, CD 31, CD 34, CD 163, and αSMA showed a statistically significant differences between the suture, control and frame methods (P < 0.05) at both time points. The average tensile strength was 4.03 ±â€¯0.49, 7.45 ±â€¯0.49 and 5.72 ±â€¯1.34 (MPa) after 1 week and 0.55 ±â€¯0.26, 0.12 ±â€¯0.03 and 0.41 ±â€¯0.32 (MPa) after 4 weeks in the suture, control, and frame methods; respectively. TEM analysis showed an increase in inflammatory cells in both suture and control methods following implantation. CONCLUSION: Rat subcutaneous implantation with the frame method was performed with success and ease. The surgical approach used for the frame technique was found to be the best methodology for in vivo evaluation of tissue engineered acellular scaffolds, where the frame method did not compromise mechanical strength, but it reduced inflammation significantly.


Assuntos
Gordura Subcutânea , Engenharia Tecidual/tendências , Alicerces Teciduais , Animais , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Gordura Subcutânea/cirurgia , Suínos
19.
PLoS One ; 12(8): e0181614, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763463

RESUMO

Current research on valvular heart repair has focused on tissue-engineered heart valves (TEHV) because of its potential to grow similarly to native heart valves. Decellularized xenografts are a promising solution; however, host recellularization remains challenging. In this study, decellularized porcine aortic valves were implanted into the right ventricular outflow tract (RVOT) of sheep to investigate recellularization potential. Porcine aortic valves, decellularized with sodium dodecyl sulfate (SDS), were sterilized by supercritical carbon dioxide (scCO2) and implanted into the RVOT of five juvenile polypay sheep for 5 months (n = 5). During implantation, functionality of the valves was assessed by serial echocardiography, blood tests, and right heart pulmonary artery catheterization measurements. The explanted valves were characterized through gross examination, mechanical characterization, and immunohistochemical analysis including cell viability, phenotype, proliferation, and extracellular matrix generation. Gross examination of the valve cusps demonstrated the absence of thrombosis. Bacterial and fungal stains were negative for pathogenic microbes. Immunohistochemical analysis showed the presence of myofibroblast-like cell infiltration with formation of new collagen fibrils and the existence of an endothelial layer at the surface of the explant. Analysis of cell phenotype and morphology showed no lymphoplasmacytic infiltration. Tensile mechanical testing of valve cusps revealed an increase in stiffness while strength was maintained during implantation. The increased tensile stiffness confirms the recellularization of the cusps by collagen synthesizing cells. The current study demonstrated the feasibility of the trans-species implantation of a non-fixed decellularized porcine aortic valve into the RVOT of sheep. The implantation resulted in recellularization of the valve with sufficient hemodynamic function for the 5-month study. Thus, the study supports a potential role for use of a TEHV for the treatment of valve disease in humans.


Assuntos
Valva Aórtica/patologia , Próteses Valvulares Cardíacas , Ventrículos do Coração/patologia , Animais , Valva Aórtica/cirurgia , Fenômenos Biomecânicos , Dióxido de Carbono/química , Proliferação de Células , Sobrevivência Celular , Ecocardiografia , Matriz Extracelular/metabolismo , Feminino , Ventrículos do Coração/cirurgia , Hemodinâmica , Humanos , Masculino , Fenótipo , Desenho de Prótese , Valva Pulmonar/patologia , Ovinos , Suínos , Resistência à Tração , Engenharia Tecidual/métodos , Transplante Heterólogo
20.
JACC Basic Transl Sci ; 2(1): 71-84, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28337488

RESUMO

OBJECTIVE: The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. BACKGROUND: Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. METHODS: Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. RESULTS: Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). CONCLUSIONS: Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. SUMMARY: Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile using histology, microbe culture and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide treated valves were higher compared to valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...