Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; 23(5): 463-469, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29447023

RESUMO

Measurement of the late potentials and His-bundle activity is crucial for many clinical studies using the noncontact and noninvasive magnetocardiography (MCG) technique; these weak signals are extracted by averaging many cardiac cycles aligned using the R-peak of the cardiac cycle identified using an electrocardiography (ECG) lead. ECG is measured simultaneously with MCG using a conventional dual-supply ECG amplifier, which requires either two separate batteries or a single battery with a switching voltage inverter circuit for its proper operation. The ECG circuitry based on two separate batteries requires a relatively large voltage supply (-18 to +18 V). The single-supply (low voltage: 0-9 V) ECG circuitry may be implemented using a switching voltage inverter; however, this mode of operation introduces switching noise in the system. The objective of the present work is to overcome these problems by carefully designing a low-voltage, single-supply ECG system, which can be used simultaneously with the MCG setup without introducing a significant level of additional noise in the MCG measurement system.


Assuntos
Eletrocardiografia/instrumentação , Desenho de Equipamento , Magnetocardiografia/instrumentação , Artefatos
2.
J Med Biol Eng ; 37(2): 201-208, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29541010

RESUMO

Electroencephalography (EEG) is a non-invasive way of recording brain activities, making it useful for diagnosing various neurological disorders. However, artifact signals associated with eye blinks or the heart spread across the scalp, contaminating EEG recordings and making EEG data analysis difficult. To solve this problem, we implement a common methodology to suppress both cardiac and ocular artifact signal, by correlating the measured contaminated EEG signals with the clean reference electro-oculography (EOG) and electrocardiography (EKG) data and subtracting the scaled EOG and EKG from the contaminated EEG recording. In the proposed methodology, the clean EOG and EKG signals are extracted by subjecting the raw reference time-series data to ensemble empirical mode decomposition to obtain the intrinsic mode functions. Then, an unsupervised technique is used to capture the artifact components. We compare the distortion introduced into the brain signal after artifact suppression using the proposed method with those obtained using conventional regression alone and with a wavelet-based approach. The results show that the proposed method outperforms the other techniques, with an additional advantage of being a common methodology for the suppression of two types of artifact.

3.
Rev Sci Instrum ; 87(4): 045102, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27131702

RESUMO

An impedance capillary based Variable Temperature Regulator (VTR) for regulation of temperature in the range of 4.2 K-300 K, which can be detached and inserted into any experimental setup with a 50 mm diameter top access, has been designed, fabricated, and tested. The VTR may be used as a highly compact probe, which can be readily inserted in any liquid helium dewar or cryostat to realize uniform rates of cooling/heating and to achieve excellent temperature stability of ±1 mK at any temperature between 4.2 K and 300 K. VTR has been subjected to extensive experimental testing to arrive at optimum values of control parameters that are expected to influence its performance. The VTR may be integrated into any experimental setup for measurement of physical properties at low temperatures.

4.
Med Eng Phys ; 36(10): 1266-76, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25074650

RESUMO

We adopt the Ensemble Empirical Mode Decomposition (EEMD) method, with an appropriate thresholding on the Intrinsic Mode Functions (IMFs), to denoise the magnetocardiography (MCG) signal. To this end, we discuss the two associated problems that relate to: (i) the amplitude of noise added to the observed signal in the EEMD method with a view to prevent mode mixing and (ii) the effect of direct thresholding that causes discontinuities in the reconstructed denoised signal. We then denoise the MCG signals, having various signal-to-noise ratios, by using this method and compare the results with those obtained by the standard wavelet based denoising method. We also address the problem of eliminating the high frequency baseline drift such as the sudden and discontinuous changes in the baseline of the experimentally measured MCG signal using the EEMD based method. We show that the EEMD method used for denoising and the elimination of baseline drift is superior in performance to other standard methods such as wavelet based techniques and Independent Component Analysis (ICA).


Assuntos
Magnetocardiografia/métodos , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Humanos , Análise de Ondaletas
5.
J Lab Autom ; 19(4): 413-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24464811

RESUMO

This article reports the development of programmable system-on-chip (PSoC)-based embedded readout designs for liquid helium level sensors using resistive liquid vapor discriminators. The system has been built for the measurement of liquid helium level in a concave-bottomed, helmet-shaped, fiber-reinforced plastic cryostat for magnetoencephalography. This design incorporates three carbon resistors as cost-effective sensors, which are mounted at desired heights inside the cryostat and were used to infer the liquid helium level by measuring their temperature-dependent resistance. Localized electrical heating of the carbon resistors was used to discriminate whether the resistor is immersed in liquid helium or its vapor by exploiting the difference in the heat transfer rates in the two environments. This report describes a single PSoC chip for the design and development of a constant current source to drive the three carbon resistors, a multiplexer to route the sensor outputs to the analog-to-digital converter (ADC), a buffer to avoid loading of the sensors, an ADC for digitizing the data, and a display using liquid crystal display cum light-emitting diode modules. The level sensor readout designed with a single PSoC chip enables cost-effective and reliable measurement system design.


Assuntos
Hélio/análise , Dispositivos Lab-On-A-Chip , Magnetoencefalografia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Cristais Líquidos , Temperatura
6.
Rev Sci Instrum ; 82(1): 015109, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21280860

RESUMO

We present the design, fabrication, integration, testing, and calibration of a high field superconducting quantum interference device (SQUID) magnetometer. The system is based on dc SQUID sensor with flux locked loop readout electronics. The design is modular and all the subsystems have been fabricated in the form of separate modules in order to simplify the assembly and for ease of maintenance. A novel feature of the system is that the current induced in the pickup loop is distributed as inputs to two different SQUID sensors with different strengths of coupling in order to improve the dynamic range of the system. The SQUID magnetometer has been calibrated with yttrium iron garnet (YIG) sphere as a standard reference material. The calibration factor was determined by fitting the measured flux profile of the YIG sphere to that expected for a point dipole. Gd(2)O(3) was also used as another reference material for the calibration and the effective magnetic moment of the Gd(3+) could be evaluated from the temperature dependent magnetization measurements. The sensitivity of the system has been estimated to be about 10(-7) emu at low magnetic fields and about 10(-5) emu at high magnetic fields ∼7 T.

7.
Rev Sci Instrum ; 81(4): 045112, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20441373

RESUMO

A novel variable temperature regulator (VTR) based on the use of a fine impedance capillary to control the flow rate of cold helium gas into the VTR chamber is described. The capillary has a diameter of just 200 microm and the flow rate of cold helium gas through the capillary can be effectively controlled to the desired value by heating the capillary to a preset temperature and by controlling the pressure in the VTR chamber to a preset pressure using automated control circuits. Excellent temperature stability (about +/-1 mK at 10 K and +/-2 mK at 100 K) has been demonstrated in this setup with uniform rates of heating or cooling by an optimal choice of parameters. Compared to the more conventional VTR designs based on the use of mechanical long stem valves in the liquid helium reservoir to control the flow rate of liquid helium into the VTR chamber, and the use of a needle valve at the top of the cryostat to control the exchange gas pressure in the thermal isolation chamber, the present design enables temperature stability at any user desired temperature to be attained with uniform rates of cooling/heating with minimum consumption of liquid helium. The VTR has been successfully incorporated in the high field superconducting quantum interference device magnetometer setup developed in-house. It can also be incorporated in any low temperature physical property measurement system in which the temperature has to be varied in a controlled manner from 4.2 to 300 K and vice versa with uniform rates of heating and cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...