Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 6(5): e2314748, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219907

RESUMO

Importance: Prostate-specific antigen membrane positron-emission tomography (PSMA-PET) is increasingly used to guide salvage radiotherapy (sRT) after radical prostatectomy for patients with recurrent or persistent prostate cancer. Objective: To develop and validate a nomogram for prediction of freedom from biochemical failure (FFBF) after PSMA-PET-based sRT. Design, Setting, and Participants: This retrospective cohort study included 1029 patients with prostate cancer treated between July 1, 2013, and June 30, 2020, at 11 centers from 5 countries. The initial database consisted of 1221 patients. All patients had a PSMA-PET scan prior to sRT. Data were analyzed in November 2022. Exposures: Patients with a detectable post-radical prostatectomy prostate-specific antigen (PSA) level treated with sRT to the prostatic fossa with or without additional sRT to pelvic lymphatics or concurrent androgen deprivation therapy (ADT) were eligible. Main Outcomes and Measures: The FFBF rate was estimated, and a predictive nomogram was generated and validated. Biochemical relapse was defined as a PSA nadir of 0.2 ng/mL after sRT. Results: In the nomogram creation and validation process, 1029 patients (median age at sRT, 70 years [IQR, 64-74 years]) were included and further divided into a training set (n = 708), internal validation set (n = 271), and external outlier validation set (n = 50). The median follow-up was 32 months (IQR, 21-45 months). Based on the PSMA-PET scan prior to sRT, 437 patients (42.5%) had local recurrences and 313 patients (30.4%) had nodal recurrences. Pelvic lymphatics were electively irradiated for 395 patients (38.4%). All patients received sRT to the prostatic fossa: 103 (10.0%) received a dose of less than 66 Gy, 551 (53.5%) received a dose of 66 to 70 Gy, and 375 (36.5%) received a dose of more than 70 Gy. Androgen deprivation therapy was given to 325 (31.6%) patients. On multivariable Cox proportional hazards regression analysis, pre-sRT PSA level (hazard ratio [HR], 1.80 [95% CI, 1.41-2.31]), International Society of Urological Pathology grade in surgery specimen (grade 5 vs 1+2: HR, 2.39 [95% CI, 1.63-3.50], pT stage (pT3b+pT4 vs pT2: HR, 1.91 [95% CI, 1.39-2.67]), surgical margins (R0 vs R1+R2+Rx: HR, 0.60 [95% CI, 0.48-0.78]), ADT use (HR, 0.49 [95% CI, 0.37-0.65]), sRT dose (>70 vs ≤66 Gy: HR, 0.44 [95% CI, 0.29-0.67]), and nodal recurrence detected on PSMA-PET scans (HR, 1.42 [95% CI, 1.09-1.85]) were associated with FFBF. The mean (SD) nomogram concordance index for FFBF was 0.72 (0.06) for the internal validation cohort and 0.67 (0.11) in the external outlier validation cohort. Conclusions and Relevance: This cohort study of patients with prostate cancer presents an internally and externally validated nomogram that estimated individual patient outcomes after PSMA-PET-guided sRT.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico , Antagonistas de Androgênios , Androgênios , Estudos de Coortes , Nomogramas , Estudos Retrospectivos , Doença Crônica , Recidiva
2.
NAR Genom Bioinform ; 3(4): lqab103, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34761220

RESUMO

A comprehensive, accurate functional annotation of genes is key to systems-level approaches. As functionally related genes tend to be co-expressed, one possible approach to identify functional modules or supplement existing gene annotations is to analyse gene co-expression. We describe TopoFun, a machine learning method that combines topological and functional information to improve the functional similarity of gene co-expression modules. Using LASSO, we selected topological descriptors that discriminated modules made of functionally related genes and random modules. Using the selected topological descriptors, we performed linear discriminant analysis to construct a topological score that predicted the type of a module, random-like or functional-like. We combined the topological score with a functional similarity score in a fitness function that we used in a genetic algorithm to explore the co-expression network. To illustrate the use of TopoFun, we started from a subset of the Gene Ontology Biological Processes (GO-BPs) and showed that TopoFun efficiently retrieved genes that we omitted, and aggregated a number of novel genes to the initial GO-BP while improving module topology and functional similarity. Using an independent protein-protein interaction database, we confirmed that the novel genes gathered by TopoFun were functionally related to the original gene set.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...