Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 229(3): 531-547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38041743

RESUMO

Adult visual plasticity underlying local remodeling of the cortical circuitry in vivo appears to be associated with a spatiotemporal pattern of strongly increased spontaneous and evoked activity of populations of cells. Here we review and discuss pioneering work by us and others about principles of plasticity in the adult visual cortex, starting with our study which showed that a confined lesion in the cat retina causes increased excitability in the affected region in the primary visual cortex accompanied by fine-tuned restructuring of neuronal function. The underlying remodeling processes was further visualized with voltage-sensitive dye (VSD) imaging that allowed a direct tracking of retinal lesion-induced reorganization across horizontal cortical circuitries. Nowadays, application of noninvasive stimulation methods pursues the idea further of increased cortical excitability along with decreased inhibition as key factors for the induction of adult cortical plasticity. We used high-frequency transcranial magnetic stimulation (TMS), for the first time in combination with VSD optical imaging, and provided evidence that TMS-amplified excitability across large pools of neurons forms the basis for noninvasively targeting reorganization of orientation maps in the visual cortex. Our review has been compiled on the basis of these four own studies, which we discuss in the context of historical developments in the field of visual cortical plasticity and the current state of the literature. Overall, we suggest markers of LTP-like cortical changes at mesoscopic population level as a main driving force for the induction of visual plasticity in the adult. Elevations in excitability that predispose towards cortical plasticity are most likely a common property of all cortical modalities. Thus, interventions that increase cortical excitability are a promising starting point to drive perceptual and potentially motor learning in therapeutic applications.


Assuntos
Plasticidade Neuronal , Córtex Visual , Adulto , Humanos , Plasticidade Neuronal/fisiologia , Encéfalo , Estimulação Magnética Transcraniana/métodos , Neurônios , Córtex Visual/fisiologia
2.
PLoS One ; 18(11): e0293725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917779

RESUMO

Apparent motion is a visual illusion in which stationary stimuli, flashing in distinct spatial locations at certain time intervals, are perceived as one stimulus moving between these locations. In the primary visual cortex, apparent-motion stimuli produce smooth spatio-temporal patterns of activity similar to those produced by continuously moving stimuli. An important prerequisite for producing such activity patterns is prolongation of responses to brief stimuli. Indeed, a brief stimulus can evoke in the visual cortex a long response, outlasting the stimulus by hundreds of milliseconds. Here we use firing-rate based models with simple ring structure, and biologically-detailed conductance-based refractory density (CBRD) model with retinotopic space representation to analyze the response retention and the origin of smooth profiles of activity in response to apparent-motion stimuli. We show that the strength of recurrent connectivity is the major factor that endorses neuronal networks with the ability for response retention. The same strengths of recurrent connections mediate the appearance of bump attractor in the ring models. Factors such as synaptic depression, NMDA receptor mediated currents, and conductances regulating spike adaptation influence response retention, but cannot substitute for the weakness of recurrent connections to reproduce response retention in models with weak connectivity. However, the weakness of lateral recurrent connections can be compensated by layering: in multi-layer models even with weaker connections the activity retains due to its feedforward propagation from layer to layer. Using CBRD model with retinotopic space representation we further show that smooth spatio-temporal profiles of activity in response to apparent-motion stimuli are produced in the models expressing response retention, but not in the models that fail to produce response retention. Together, these results demonstrate a link between response retention and the ability of neuronal networks to generate spatio-temporal patterns of activity, which are compatible with perception of apparent motion.


Assuntos
Percepção de Movimento , Córtex Visual , Percepção de Movimento/fisiologia , Estimulação Luminosa , Neurônios/fisiologia , Córtex Visual/fisiologia , Movimento (Física) , Percepção Visual
3.
iScience ; 26(1): 105828, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36632066

RESUMO

Neuronal plasticity underlying cerebellar learning behavior is strongly associated with type 1 metabotropic glutamate receptor (mGluR1) signaling. Activation of mGluR1 leads to activation of the Gq/11 pathway, which is involved in inducing synaptic plasticity at the parallel fiber-Purkinje cell synapse (PF-PC) in form of long-term depression (LTD). To optogenetically modulate mGluR1 signaling we fused mouse melanopsin (OPN4) that activates the Gq/11 pathway to the C-termini of mGluR1 splice variants (OPN4-mGluR1a and OPN4-mGluR1b). Activation of both OPN4-mGluR1 variants showed robust Ca2+ increase in HEK cells and PCs of cerebellar slices. We provide the prove-of-concept approach to modulate synaptic plasticity via optogenetic activation of OPN4-mGluR1a inducing LTD at the PF-PC synapse in vitro. Moreover, we demonstrate that light activation of mGluR1a signaling pathway by OPN4-mGluR1a in PCs leads to an increase in intrinsic activity of PCs in vivo and improved cerebellum driven learning behavior.

4.
FEBS J ; 289(8): 2067-2084, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33797854

RESUMO

What is the effect of activating a single modulatory neuronal receptor type on entire brain network dynamics? Can such effect be isolated at all? These are important questions because characterizing elementary neuronal processes that influence network activity across the given anatomical backbone is fundamental to guide theories of brain function. Here, we introduce the concept of the cortical 'receptome' taking into account the distribution and densities of expression of different modulatory receptor types across the brain's anatomical connectivity matrix. By modelling whole-brain dynamics in silico, we suggest a bidirectional coupling between modulatory neurotransmission and neuronal connectivity hardware exemplified by the impact of single serotonergic (5-HT) receptor types on cortical dynamics. As experimental support of this concept, we show how optogenetic tools enable specific activation of a single 5-HT receptor type across the cortex as well as in vivo measurement of its distinct effects on cortical processing. Altogether, we demonstrate how the structural neuronal connectivity backbone and its modulation by a single neurotransmitter system allow access to a rich repertoire of different brain states that are fundamental for flexible behaviour. We further propose that irregular receptor expression patterns-genetically predisposed or acquired during a lifetime-may predispose for neuropsychiatric disorders like addiction, depression and anxiety along with distinct changes in brain state. Our long-term vision is that such diseases could be treated through rationally targeted therapeutic interventions of high specificity to eventually recover natural transitions of brain states.


Assuntos
Encéfalo , Receptores de Serotonina , Encéfalo/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Optogenética , Receptores de Serotonina/metabolismo
5.
Trends Neurosci ; 44(5): 339-341, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33712269

RESUMO

We all know the disappointment when, after a wonderful snapshot, the details in the photo are at much lower contrast than seen before with our own eyes. A recent study by Rahimi-Nasrabadi et al. revealed that this is because human vision accounts for actual luminance range and for accompanied asymmetric changes in dark and light contrasts.


Assuntos
Córtex Visual , Yin-Yang , Humanos , Vias Visuais
6.
PLoS One ; 15(5): e0232349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32365070

RESUMO

A popular model for sensory processing, known as predictive coding, proposes that incoming signals are iteratively compared with top-down predictions along a hierarchical processing scheme. At each step, error signals arising from differences between actual input and prediction are forwarded and recurrently minimized by updating internal models to finally be "explained away". However, the neuronal mechanisms underlying such computations and their limitations in processing speed are largely unknown. Further, it remains unclear at which step of cortical processing prediction errors are explained away, if at all. In the present study, human subjects briefly viewed the superposition of two orthogonally oriented gratings followed by abrupt removal of one orientation after either 33 or 200 milliseconds. Instead of strictly seeing the remaining orientation, observers report rarely but highly significantly an illusory percept of the arithmetic difference between previous and actual orientations. Previous findings in cats using the identical paradigm suggest that such difference signals are inherited from first steps of visual cortical processing. In light of early modeling accounts of predictive coding, in which visual neurons were interpreted as residual error detectors signaling the difference between actual input and its temporal prediction based on past input, our data may indicate continued access to residual errors. Such strategy permits time-critical perceptual decision making across a spectrum of competing internal signals up to the highest levels of processing. Thus, the occasional appearance of a prediction error-like illusory percept may uncover maintained flexibility at perceptual decision stages when subjects cope with highly dynamic and ambiguous visual stimuli.


Assuntos
Ilusões/fisiologia , Estimulação Luminosa/instrumentação , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Orientação Espacial , Estimulação Luminosa/métodos , Adulto Jovem
7.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32252889

RESUMO

Controlling gain of cortical activity is essential to modulate weights between internal ongoing communication and external sensory drive. Here, we show that serotonergic input has separable suppressive effects on the gain of ongoing and evoked visual activity. We combined optogenetic stimulation of the dorsal raphe nucleus (DRN) with wide-field calcium imaging, extracellular recordings, and iontophoresis of serotonin (5-HT) receptor antagonists in the mouse visual cortex. 5-HT1A receptors promote divisive suppression of spontaneous activity, while 5-HT2A receptors act divisively on visual response gain and largely account for normalization of population responses over a range of visual contrasts in awake and anesthetized states. Thus, 5-HT input provides balanced but distinct suppressive effects on ongoing and evoked activity components across neuronal populations. Imbalanced 5-HT1A/2A activation, either through receptor-specific drug intake, genetically predisposed irregular 5-HT receptor density, or change in sensory bombardment may enhance internal broadcasts and reduce sensory drive and vice versa.


Assuntos
Núcleo Dorsal da Rafe/fisiologia , Optogenética/métodos , Neurônios Serotoninérgicos/fisiologia , Córtex Visual/fisiologia , Animais , Linhagem Celular , Núcleo Dorsal da Rafe/efeitos dos fármacos , Luz , Estudos Longitudinais , Camundongos , Camundongos Transgênicos , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/fisiologia , Serotonina/fisiologia , Antagonistas da Serotonina/administração & dosagem , Córtex Visual/efeitos dos fármacos
8.
Commun Biol ; 2: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30793039

RESUMO

The signal specificity of G protein-coupled receptors (GPCRs) including serotonin receptors (5-HT-R) depends on the trafficking and localization of the GPCR within its subcellular signaling domain. Visualizing traffic-dependent GPCR signals in neurons is difficult, but important to understand the contribution of GPCRs to synaptic plasticity. We engineered CaMello (Ca2+-melanopsin-local-sensor) and CaMello-5HT2A for visualization of traffic-dependent Ca2+ signals in 5-HT2A-R domains. These constructs consist of the light-activated Gq/11 coupled melanopsin, mCherry and GCaMP6m for visualization of Ca2+ signals and receptor trafficking, and the 5-HT2A C-terminus for targeting into 5-HT2A-R domains. We show that the specific localization of the GPCR to its receptor domain drastically alters the dynamics and localization of the intracellular Ca2+ signals in different neuronal populations in vitro and in vivo. The CaMello method may be extended to every GPCR coupling to the Gq/11 pathway to help unravel new receptor-specific functions in respect to synaptic plasticity and GPCR localization.


Assuntos
Técnicas Biossensoriais , Cálcio/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Optogenética/métodos , Receptor 5-HT2A de Serotonina/genética , Opsinas de Bastonetes/genética , Animais , Cerebelo/citologia , Cerebelo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Eletrodos Implantados , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico , Ratos , Ratos Long-Evans , Receptor 5-HT2A de Serotonina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Opsinas de Bastonetes/metabolismo , Técnicas Estereotáxicas
9.
Proc Natl Acad Sci U S A ; 115(25): 6476-6481, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866856

RESUMO

Transcranial magnetic stimulation (TMS) has become a popular clinical method to modify cortical processing. The events underlying TMS-induced functional changes remain, however, largely unknown because current noninvasive recording methods lack spatiotemporal resolution or are incompatible with the strong TMS-associated electrical field. In particular, an answer to the question of how the relatively unspecific nature of TMS stimulation leads to specific neuronal reorganization, as well as a detailed picture of TMS-triggered reorganization of functional brain modules, is missing. Here we used real-time optical imaging in an animal experimental setting to track, at submillimeter range, TMS-induced functional changes in visual feature maps over several square millimeters of the brain's surface. We show that high-frequency TMS creates a transient cortical state with increased excitability and increased response variability, which opens a time window for enhanced plasticity. Visual stimulation (i.e., 30 min of passive exposure) with a single orientation applied during this TMS-induced permissive period led to enlarged imprinting of the chosen orientation on the visual map across visual cortex. This reorganization was stable for hours and was characterized by a systematic shift in orientation preference toward the trained orientation. Thus, TMS can noninvasively trigger a targeted large-scale remodeling of fundamentally mature functional architecture in early sensory cortex.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico/métodos , Gatos , Orientação/fisiologia , Estimulação Luminosa/métodos , Estimulação Magnética Transcraniana/métodos
10.
Neurophotonics ; 4(3): 031206, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28217713

RESUMO

Wide-field voltage imaging is unique in its capability to capture snapshots of activity-across the full gradient of average changes in membrane potentials from subthreshold to suprathreshold levels-of hundreds of thousands of superficial cortical neurons that are simultaneously active. Here, I highlight two examples where voltage-sensitive dye imaging (VSDI) was exploited to track gradual space-time changes of activity within milliseconds across several millimeters of cortex at submillimeter resolution: the line-motion condition, measured in Amiram Grinvald's Laboratory more than 10 years ago and-coming full circle running VSDI in my laboratory-another motion-inducing condition, in which two neighboring stimuli counterchange luminance simultaneously. In both examples, cortical spread is asymmetrically boosted, creating suprathreshold activity drawn out over primary visual cortex. These rapidly propagating waves may integrate brain signals that encode motion independent of direction-selective circuits.

11.
Curr Biol ; 26(9): 1206-12, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27068418

RESUMO

G-protein-coupled receptors (GPCRs) represent the major protein family for cellular modulation in mammals. Therefore, various strategies have been developed to analyze the function of GPCRs involving pharmaco- and optogenetic approaches [1, 2]. However, a tool that combines precise control of the activation and deactivation of GPCR pathways and/or neuronal firing with limited phototoxicity is still missing. We compared the biophysical properties and optogenetic application of a human and a mouse melanopsin variant (hOpn4L and mOpn4L) on the control of Gi/o and Gq pathways in heterologous expression systems and mouse brain. We found that GPCR pathways can be switched on/off by blue/yellow light. The proteins differ in their kinetics and wavelength dependence to activate and deactivate G protein pathways. Whereas mOpn4L is maximally activated by very short light pulses, leading to sustained G protein activation, G protein responses of hOpn4L need longer light pulses to be activated and decline in amplitude. Based on the different biophysical properties, brief light activation of mOpn4L is sufficient to induce sustained neuronal firing in cerebellar Purkinje cells (PC), whereas brief light activation of hOpn4L induces AP firing, which declines in frequency over time. Most importantly, mOpn4L-induced sustained firing can be switched off by yellow light. Based on the biophysical properties, hOpn4L and mOpn4L represent the first GPCR optogenetic tools, which can be used to switch GPCR pathways/neuronal firing on an off with temporal precision and limited phototoxicity. We suggest to name these tools moMo and huMo for future optogenetic applications.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/fisiologia , Variação Genética , Humanos , Camundongos , Mutação , Células de Purkinje/fisiologia , Opsinas de Bastonetes/genética
12.
J Neurosci ; 36(6): 1902-13, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865614

RESUMO

Differences between visual pathways representing darks and lights have been shown to affect spatial resolution and detection timing. Both psychophysical and physiological studies suggest an underlying retinal origin with amplification in primary visual cortex (V1). Here we show that temporal asymmetries in the processing of darks and lights create motion in terms of propagating activity across V1. Exploiting the high spatiotemporal resolution of voltage-sensitive dye imaging, we captured population responses to abrupt local changes of luminance in cat V1. For stimulation we used two neighboring small squares presented on either bright or dark backgrounds. When a single square changed from dark to bright or vice versa, we found coherent population activity emerging at the respective retinal input locations. However, faster rising and decay times were obtained for the bright to dark than the dark to bright changes. When the two squares changed luminance simultaneously in opposite polarities, we detected a propagating wave front of activity that originated at the cortical location representing the darkened square and rapidly expanded toward the region representing the brightened location. Thus, simultaneous input led to sequential activation across cortical retinotopy. Importantly, this effect was independent of the squares' contrast with the background. We suggest imbalance in dark-bright processing as a driving force in the generation of wave-like activity. Such propagation may convey motion signals and influence perception of shape whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders. SIGNIFICANCE STATEMENT: An elementary process in vision is the detection of darks and lights through the retina via ON and OFF channels. Psychophysical and physiological studies suggest that differences between these channels affect spatial resolution and detection thresholds. Here we show that temporal asymmetries in the processing of darks and lights create motion signals across visual cortex. Using two neighboring squares, which simultaneously counterchanged luminance, we discovered propagating activity that was strictly drawn out from cortical regions representing the darkened location. Thus, a synchronous stimulus event translated into sequential wave-like brain activation. Such propagation may convey motion signals accessible in higher brain areas, whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders.


Assuntos
Lateralidade Funcional/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Gatos , Sensibilidades de Contraste/fisiologia , Feminino , Percepção de Forma/fisiologia , Humanos , Luz , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Psicofísica , Retina/fisiologia , Vias Visuais/fisiologia
14.
Cereb Cortex ; 25(6): 1427-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24343889

RESUMO

The visual system is confronted with rapidly changing stimuli in everyday life. It is not well understood how information in such a stream of input is updated within the brain. We performed voltage-sensitive dye imaging across the primary visual cortex (V1) to capture responses to sequences of natural scene contours. We presented vertically and horizontally filtered natural images, and their superpositions, at 10 or 33 Hz. At low frequency, the encoding was found to represent not the currently presented images, but differences in orientation between consecutive images. This was in sharp contrast to more rapid sequences for which we found an ongoing representation of current input, consistent with earlier studies. Our finding that for slower image sequences, V1 does no longer report actual features but represents their relative difference in time counteracts the view that the first cortical processing stage must always transfer complete information. Instead, we show its capacities for change detection with a new emphasis on the role of automatic computation evolving in the 100-ms range, inevitably affecting information transmission further downstream.


Assuntos
Mapeamento Encefálico , Potenciais Evocados Visuais/fisiologia , Percepção de Forma/fisiologia , Orientação/fisiologia , Córtex Visual/fisiologia , Distribuição de Qui-Quadrado , Feminino , Humanos , Masculino , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Psicofísica , Fatores de Tempo , Vias Visuais/fisiologia , Imagens com Corantes Sensíveis à Voltagem
15.
Proc Natl Acad Sci U S A ; 111(37): 13553-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25187557

RESUMO

Transcranial magnetic stimulation (TMS) is widely used in clinical interventions and basic neuroscience. Additionally, it has become a powerful tool to drive plastic changes in neuronal networks. However, highly resolved recordings of the immediate TMS effects have remained scarce, because existing recording techniques are limited in spatial or temporal resolution or are interfered with by the strong TMS-induced electric field. To circumvent these constraints, we performed optical imaging with voltage-sensitive dye (VSD) in an animal experimental setting using anaesthetized cats. The dye signals reflect gradual changes in the cells' membrane potential across several square millimeters of cortical tissue, thus enabling direct visualization of TMS-induced neuronal population dynamics. After application of a single TMS pulse across visual cortex, brief focal activation was immediately followed by synchronous suppression of a large pool of neurons. With consecutive magnetic pulses (10 Hz), widespread activity within this "basin of suppression" increased stepwise to suprathreshold levels and spontaneous activity was enhanced. Visual stimulation after repetitive TMS revealed long-term potentiation of evoked activity. Furthermore, loss of the "deceleration-acceleration" notch during the rising phase of the response, as a signature of fast intracortical inhibition detectable with VSD imaging, indicated weakened inhibition as an important driving force of increasing cortical excitability. In summary, our data show that high-frequency TMS changes the balance between excitation and inhibition in favor of an excitatory cortical state. VSD imaging may thus be a promising technique to trace TMS-induced changes in excitability and resulting plastic processes across cortical maps with high spatial and temporal resolutions.


Assuntos
Estimulação Magnética Transcraniana , Córtex Visual/fisiologia , Imagens com Corantes Sensíveis à Voltagem , Animais , Gatos , Feminino , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo , Masculino , Estimulação Luminosa , Fatores de Tempo
16.
BMC Neurosci ; 15: 46, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24690416

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is able to induce changes in neuronal activity that outlast stimulation. The underlying mechanisms are not completely understood. They might be analogous to long-term potentiation or depression, as the duration of the effects seems to implicate changes in synaptic plasticity. Norepinephrine (NE) has been shown to play a crucial role in neuronal plasticity in the healthy and injured human brain. Atomoxetine (ATX) and other NE reuptake inhibitors have been shown to increase excitability in different systems and to influence learning processes. Thus, the combination of two facilitative interventions may lead to further increase in excitability and motor learning. But in some cases homeostatic metaplasticity might protect the brain from harmful hyperexcitability. In this study, the combination of 60 mg ATX and 10 Hz rTMS over the primary motor cortex was used to examine changes in cortical excitability and motor learning and to investigate their influence on synaptic plasticity mechanisms. RESULTS: The results of this double-blind placebo-controlled study showed that ATX facilitated corticospinal and intracortical excitability in motor cortex. 10 Hertz rTMS applied during a motor task was able to further increase intracortical excitability only in combination with ATX. In addition, only the combination of 10 Hz rTMS and ATX was capable of enhancing the total number of correct responses and reaction time significantly, indicating an interaction effect between rTMS and ATX without signs of homeostatic metaplasticity. CONCLUSION: These results suggest that pharmacologically enhanced NE transmission and 10 Hz rTMS exert a synergistic effect on motor cortex excitability and motor learning in healthy humans.


Assuntos
Neurônios Adrenérgicos/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Propilaminas/administração & dosagem , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana/métodos , Neurônios Adrenérgicos/efeitos dos fármacos , Inibidores da Captação Adrenérgica/administração & dosagem , Adulto , Cloridrato de Atomoxetina , Sinergismo Farmacológico , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Córtex Motor/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Valores de Referência
17.
F1000Res ; 2: 51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358899

RESUMO

How is contextual processing as demonstrated with simplified stimuli, cortically enacted in response to ecologically relevant complex and dynamic stimuli? Using voltage-sensitive dye imaging, we captured mesoscopic population dynamics across several square millimeters of cat primary visual cortex. By presenting natural movies locally through either one or two adjacent apertures, we show that simultaneous presentation leads to mutual facilitation of activity. These synergistic effects were most effective when both movie patches originated from the same natural movie, thus forming a coherent stimulus in which the inherent spatio-temporal structure of natural movies were preserved in accord with Gestalt principles of perceptual organization. These results suggest that natural sensory input triggers cooperative mechanisms that are imprinted into the cortical functional architecture as early as in primary visual cortex.

18.
J Neurosci Methods ; 203(1): 1-9, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21924292

RESUMO

Orientation and direction tuning are among the most studied features of the visual system and are routinely measured during experiments to estimate the quality of neuronal responses. However, standard approaches to report orientation selectivity are only narrowly quantitative and strongly depend on the signal quality, while the more sophisticated ones are computationally exhaustive, making them difficult to use during ongoing experiments. We propose a fast and efficient method for reporting the reliability of coding applicable to any circular parameter. Similar to standard deviation in the linear statistics, reproducibility measures trial-to-trial variability of a circular response parameter. Reproducibility is a normalized measure easily transformed to p-values, which provide explicit information about significance of the estimated orientation preference. The proposed approach is applicable to a wide range of signal types. Here, we discuss examples from optical imaging and electrophysiological recordings, and provide a more thorough examination based on tuning curves modeled in silico.


Assuntos
Algoritmos , Encéfalo/fisiologia , Modelos Neurológicos , Modelos Teóricos , Orientação/fisiologia , Animais , Humanos , Reprodutibilidade dos Testes , Software , Percepção Espacial/fisiologia
19.
PLoS One ; 6(10): e26158, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039441

RESUMO

Mammalian nasal chemosensation is predominantly mediated by two independent neuronal pathways, the olfactory and the trigeminal system. Within the early olfactory system, spatiotemporal responses of the olfactory bulb to various odorants have been mapped in great detail. In contrast, far less is known about the representation of volatile chemical stimuli at an early stage in the trigeminal system, the trigeminal ganglion (TG), which contains neurons directly projecting to the nasal cavity. We have established an in vivo preparation that allows high-resolution imaging of neuronal population activity from a large region of the rat TG using voltage-sensitive dyes (VSDs). Application of different chemical stimuli to the nasal cavity elicited distinct, stimulus-category specific, spatiotemporal activation patterns that comprised activated as well as suppressed areas. Thus, our results provide the first direct insights into the spatial representation of nasal chemosensory information within the trigeminal ganglion imaged at high temporal resolution.


Assuntos
Corantes/metabolismo , Potenciais Evocados , Gânglio Trigeminal/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
20.
Front Syst Neurosci ; 5: 4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21629708

RESUMO

Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...