Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 222: 87-100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408720

RESUMO

The Dengue virus (DENV) is the most significant arthropod-borne viral pathogen in humans with 400 million infections annually. DENV comprises four distinct serotypes (DENV-1 to -4) which complicates vaccine development. Any of the four serotypes can cause clinical illness but with distinctive infection dynamics. Variations in sequences identified within the four genomes induce structural differences in crucial RNA motifs that were suggested to be correlated to the degree of pathogenicity among DENV-1 to -4. In particular, the RNA Stem-loop A (SLA) at the 5'-end of the genome, acts as a key regulator of the viral replication cycle by interacting with the viral NS5 polymerase to initiate the minus-strand viral RNA synthesis and later to methylate and cap the synthesized RNA. The molecular details of this interaction remain not fully described. Here, we report the solution secondary structures of SLA from DENV-1 to -4. Our results highlight that the four SLA exhibit structural and dynamic differences. Secondly, to determine whether SLA RNA contains serotype-specific determinants for the recognition by the viral NS5 protein, we investigated interactions between SLA from DENV -1 to -4 and DENV2 NS5 using combined biophysical approaches. Our results show that NS5 from DENV2 is able to bind SLA from other serotypes, but that other viral or host factors may be necessary to stabilize the complex and promote the catalytically active state of the NS5. By contrast, we show that a serotype-specific binding is driven by specific interactions involving conformational changes within the SLA RNA.


Assuntos
Vírus da Dengue , RNA Viral , Proteínas não Estruturais Virais , Vírus da Dengue/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Viral/química , Regiões Promotoras Genéticas , Humanos , Conformação de Ácido Nucleico , Ligação Proteica
2.
J Colloid Interface Sci ; 600: 784-793, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34051466

RESUMO

HYPOTHESIS: The type and properties of ligands capping nanoparticles affect the characteristics of corresponding Langmuir and Langmuir-Blodgett films. When ligands are firmly anchored to the surface, as in zinc oxide nanocrystallites (ZnO NCs), compression at the air/water interface might cause ligands interdigitation and then the formation of supra-structures. Here, we evaluate how the introduction of bulky ligands, namely polyhedral oligomeric silsesquioxanes (POSSs), influences the self-assembly of POSS@ZnO NCs and the properties of corresponding thin films. EXPERIMENTS: ZnO NCs capped with asymmetrical POSS derivatives are prepared via a one-pot two-step self-supporting organometallic (OSSOM) method. POSS@ZnO NCs are characterized by employing STEM, DLS, TGA, NMR, IR, UV-VIS, and photoluminescence spectroscopy. Changes in surface pressure, surface potential, and morphology (using BAM) are recorded upon compression at the air/water interface. Films transferred onto solid substrates are examined utilizing XRR and AFM. FINDINGS: All studied POSS@ZnO NCs form stable Langmuir films. POSSs prevent the interdigitation of ligands capping neighboring NCs. Thus, POSS@ZnO NCs films resemble those composed of classical amphiphiles but without any visible structural source of amphiphilicity. We suggest that the core provides enough hydrophilicity to anchor NCs at the air/water interface. POSS ligands provide enough hydrophobicity for the NCs not to disperse into the subphase upon compression.

3.
Sci Rep ; 11(1): 7387, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795704

RESUMO

Hydrophobicity is one of the most critical factors governing the adsorption of molecules and objects, such as virions, on surfaces. Even moderate change of wetting angle of plastic surfaces causes a drastic decrease ranging from 2 to 5 logs of the viruses (e.g., T4 phage) in the suspension due to adsorption on polymer vials' walls. The effect varies immensely in seemingly identical containers but purchased from different vendors. Comparison of glass, polyethylene, polypropylene, and polystyrene containers revealed a threshold in the wetting angle of around 95°: virions adsorb on the surface of more hydrophobic containers, while in more hydrophilic vials, phage suspensions are stable. The polypropylene surface of the Eppendorf-type and Falcon-type can accommodate from around 108 PFU/ml to around 1010 PFU/ml from the suspension. The adsorption onto the container's wall might result in complete scavenging of virions from the bulk. We developed two methods to overcome this issue. The addition of surfactant Tween20 and/or plasma treatment provides a remedy by modulating surface wettability and inhibiting virions' adsorption. Plastic containers are essential consumables in the daily use of many bio-laboratories. Thus, this is important not only for phage-related research (e.g., the use of phage therapies as an alternative for antibiotics) but also for data comparison and reproducibility in the field of biochemistry and virology.


Assuntos
Bacteriófagos/metabolismo , Polipropilenos/química , Adsorção , Bacteriófago T4 , Vidro/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Plásticos , Polietileno/química , Polímeros/química , Polissorbatos/química , Poliestirenos/química , Reprodutibilidade dos Testes , Propriedades de Superfície , Tensoativos , Temperatura , Vírion , Molhabilidade
4.
Sensors (Basel) ; 20(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028629

RESUMO

Since the norovirus is the main cause of acute gastroenteritis all over the world, its fast detection is crucial in medical diagnostics. In this work, a rapid, sensitive, and selective optical fiber biosensor for the detection of norovirus virus-like particles (VLPs) is reported. The sensor is based on highly sensitive long-period fiber gratings (LPFGs) coated with antibodies against the main coat protein of the norovirus. Several modification methods were verified to obtain reliable immobilization of protein receptors on the LPFG surface. We were able to detect 1 ng/mL norovirus VLPs in a 40-min assay in a label-free manner. Thanks to the application of an optical fiber as the sensor, there is a possibility to increase the user's safety by separating the measurement point from the signal processing setup. Moreover, our sensor is small and light, and the proposed assay is straightforward. The designed LPFG-based biosensor could be applied in both fast norovirus detection and in vaccine testing.


Assuntos
Anticorpos/isolamento & purificação , Técnicas Biossensoriais , Gastroenterite/genética , Norovirus/isolamento & purificação , Gastroenterite/diagnóstico , Gastroenterite/imunologia , Gastroenterite/virologia , Humanos , Norovirus/patogenicidade , Proteínas Virais/imunologia , Proteínas Virais/isolamento & purificação
5.
Sci Rep ; 9(1): 8575, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189961

RESUMO

Evolution of bacteria to selective chemical pressure (e.g. antibiotics) is well studied in contrast to the influence of physical stressors. Here we show that instantaneous physical stress in a homogeneous environment (without concentration gradient) induces fast adaptation of Escherichia coli. We exposed E. coli to a large number of collisions of around 105 per bacterium per second with sharp ZnO nanorods. The pressure exerted on the bacterial cell wall was up to 10 GPa and induced phenotype changes. The bacteria's shape became more spherical, the density of their periplasm increased by around 15% and the average thickness of the cell wall by 30%. Such E. coli cells appeared almost as Gram-positive bacteria in the standard Gram staining. Additionally, we observed a combination of changes occurring at the genomic level (mutations identified in form of single nucleotide polymorphisms) and down-regulation of expression of 61 genes encoding proteins involved in ß-oxidation of fatty acids, glycolysis, the citric acid cycle, as well as uptake of amino acids and enzyme cofactors. Thus, we show that bacteria undergo phenotypic changes upon instantaneous, acute physical stress without any obviously available time for gradual adaptation.


Assuntos
Escherichia coli , Mutação , Nanotubos/química , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico/efeitos dos fármacos , Óxido de Zinco , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Óxido de Zinco/química , Óxido de Zinco/farmacologia
6.
Biosens Bioelectron ; 133: 8-15, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30903939

RESUMO

In this work we discussed a label-free biosensing application of long-period gratings (LPGs) optimized in refractive index (RI) sensitivity by deposition of thin tantalum oxide (TaOx) overlays. Comparing to other thin film and materials already applied for maximizing the RI sensitivity, TaOx offers good chemical and mechanical stability during its surface functionalization and other biosensing experiments. It was shown theoretically and experimentally that when RI of the overlay is as high as 2 in IR spectral range, for obtaining LPGs ultrasensitive to RI, the overlay's thickness must be determined with subnanometer precision. In this experiment the TaOx overlays were deposited using Atomic Layer Deposition method that allowed for achieving overlays with exceptionally well-defined thickness and optical properties. The TaOx nano-coated LPGs show RI sensitivity determined for a single resonance exceeding 11,500 nm/RIU in RI range nD= 1.335-1.345 RIU, as expected for label-free biosensing applications. Capability for detection of various in size biological targets, i.e., proteins (avidin) and bacteria (Escherichia coli), with TaOx-coated LPGs was verified using biotin and bacteriophage adhesin as recognition elements, respectively. It has been shown that functionalization process, as well as type of recognition elements and target analyte must be taken into consideration when the LPG sensitivity is optimized. In this work optimized approach made possible detection of small in size biological targets such as proteins with sensitivity reaching 10.21 nm/log(ng/ml).


Assuntos
Avidina/isolamento & purificação , Técnicas Biossensoriais , Escherichia coli/isolamento & purificação , Tecnologia de Fibra Óptica , Nanopartículas , Óxidos/química , Refratometria , Tantálio/química
7.
Drug Discov Today ; 23(2): 448-455, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29158194

RESUMO

Fast and reliable bacteria detection is crucial for lowering the socioeconomic burden related to bacterial infections (e.g., in healthcare, industry or security). Bacteriophages (i.e., viruses with bacterial hosts) pose advantages such as great specificity, robustness, toughness and cheap preparation, making them popular biorecognition elements in biosensors and other assays for bacteria detection. There are several possible designs of bacteriophage-based biosensors. Here, we focus on developments based on whole virions as recognition agents. We divide the review into sections dealing with phage lysis as an analytical signal, phages as capturing elements in assays and phage-based sensing layers, putting the main focus on development reported within the past three years but without omitting the fundamentals.


Assuntos
Bactérias/genética , Infecções Bacterianas/diagnóstico , Bacteriófagos/genética , Bioensaio/métodos , Técnicas Biossensoriais/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...