Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(726): eadf9561, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091405

RESUMO

Immunoglobulin E (IgE) is a key driver of type 1 hypersensitivity reactions and allergic disorders, which are globally increasing in number and severity. Although eliminating pathogenic IgE may be a powerful way to treat allergy, no therapeutic strategy reported to date can fully ablate IgE production. Interleukin-4 receptor α (IL-4Rα) signaling is required for IgE class switching, and IL-4Rα blockade gradually reduces, but does not eliminate, IgE. The persistence of IgE after IL-4Rα blockade may be due to long-lived IgE+ plasma cells that maintain serological memory to allergens and thus may be susceptible to plasma cell-targeted therapeutics. We demonstrate that transient administration of a B cell maturation antigen x CD3 (BCMAxCD3) bispecific antibody markedly depletes IgE, as well as other immunoglobulins, by ablating long-lived plasma cells, although IgE and other immunoglobulins rapidly rebound after treatment. Concomitant IL-4Rα blockade specifically and durably prevents the reemergence of IgE by blocking IgE class switching while allowing the restoration of other immunoglobulins. Moreover, this combination treatment prevented anaphylaxis in mice. Together with additional cynomolgus monkey and human data, our studies demonstrate that allergic memory is primarily maintained by both non-IgE+ memory B cells that require class switching and long-lived IgE+ plasma cells. Our combination approach to durably eliminate pathogenic IgE has potential to benefit allergy in humans while preserving antibody-mediated immunity.


Assuntos
Anafilaxia , Imunoglobulina E , Camundongos , Humanos , Animais , Macaca fascicularis , Plasmócitos , Alérgenos
2.
Sci Adv ; 8(31): eabo0502, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930644

RESUMO

Improving the thermal stability of biologics, including vaccines, is critical to reduce the economic costs and health risks associated with the cold chain. Here, we designed a versatile, safe, and easy-to-use reversible PEG-based hydrogel platform formed via dynamic covalent boronic ester cross-linking for the encapsulation, stabilization, and on-demand release of biologics. Using these reversible hydrogels, we thermally stabilized a wide range of biologics up to 65°C, including model enzymes, heat-sensitive clinical diagnostic enzymes (DNA gyrase and topoisomerase I), protein-based vaccines (H5N1 hemagglutinin), and whole viruses (adenovirus type 5). Our data support a generalized protection mechanism for the thermal stabilization of diverse biologics using direct encapsulation in reversible hydrogels. Furthermore, preliminary toxicology data suggest that the components of our hydrogel are safe for in vivo use. Our reversible hydrogel platform offers a simple material solution to mitigate the costs and risks associated with reliance on a continuous cold chain for biologic transport and storage.

3.
Biomacromolecules ; 19(3): 740-747, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29394044

RESUMO

Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (ß-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. ß-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex biologics during storage and shipment that additionally enable on-demand release of active molecules at the point of use.


Assuntos
Bacteriófago T4/enzimologia , DNA Ligases/química , Temperatura Alta , Hidrogéis/química , Processos Fotoquímicos , Polietilenoglicóis/química , Proteínas Virais/química , Estabilidade Enzimática
4.
PLoS One ; 11(3): e0151252, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978520

RESUMO

The precise context in which the innate immune system is activated plays a pivotal role in the subsequent instruction of CD4+ T helper (Th) cell responses. Th1 responses are downregulated when antigen is encountered in the presence of antigen-IgG immune complexes. To assess if Th17 responses to antigen are subject to similar influences in the presence of immune complexes we utilized an inflammatory airway disease model in which immunization of mice with Complete Freund's Adjuvant (CFA) and ovalbumin (Ova) induces a powerful Ova-specific Th1 and Th17 response. Here we show that modification of that immunization with CFA to include IgG-Ova immune complexes results in the suppression of CFA-induced Th17 responses and a concurrent enhancement of Ova-specific Th2 responses. Furthermore, we show the mechanism by which these immune complexes suppress Th17 responses is through the enhancement of IL-10 production. In addition, the generation of Th17 responses following immunization with CFA and Ova were dependent on IL-1α but independent of NLRP3 inflammasome activation. Together these data represent a novel mechanism by which the generation of Th17 responses is regulated.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Inflamassomos/imunologia , Células Th17/imunologia , Animais , Complexo Antígeno-Anticorpo/metabolismo , Adjuvante de Freund , Imunização , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Camundongos , Ovalbumina , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
5.
J Immunol ; 193(10): 5190-8, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25320279

RESUMO

IgG immune complexes have been shown to modify immune responses driven by APCs in either a pro- or anti-inflammatory direction depending upon the context of stimulation. However, the ability of immune complexes to modulate the inflammasome-dependent innate immune response is unknown. In this study, we show that IgG immune complexes suppress IL-1α and IL-1ß secretion through inhibition of inflammasome activation. The mechanism by which this inhibition occurs is via immune complex ligation of activating FcγRs, resulting in prevention of both activation and assembly of the inflammasome complex in response to nucleotide-binding domain leucine-rich repeat (NLR) P3, NLRC4, or AIM2 agonists. In vivo, administration of Ag in the form of an immune complex during priming of the immune response inhibited resultant adaptive immune responses in an NLRP3-dependent model of allergic airway disease. Our data reveal an unexpected mechanism regulating CD4(+) T cell differentiation, by which immune complexes suppress inflammasome activation and the generation of IL-1α and IL-1ß from APCs, which are critical for the Ag-driven differentiation of CD4(+) T cells.


Assuntos
Complexo Antígeno-Anticorpo/genética , Linfócitos T CD4-Positivos/imunologia , Inflamassomos/imunologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Pulmão/imunologia , Hipersensibilidade Respiratória/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/patologia , Regulação da Expressão Gênica , Imunidade Inata , Inflamassomos/genética , Interleucina-1alfa/biossíntese , Interleucina-1beta/biossíntese , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Receptores de IgG/genética , Receptores de IgG/imunologia , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 111(3): 1072-7, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395802

RESUMO

Chronic recurrent multifocal osteomyelitis (CRMO) is a human autoinflammatory disorder that primarily affects bone. Missense mutation (L98P) of proline-serine-threonine phosphatase-interacting protein 2 (Pstpip2) in mice leads to a disease that is phenotypically similar to CRMO called chronic multifocal osteomyelitis (cmo). Here we show that deficiency of IL-1RI in cmo mice resulted in a significant reduction in the time to onset of disease as well as the degree of bone pathology. Additionally, the proinflammatory cytokine IL-1ß, but not IL-1α, played a critical role in the pathology observed in cmo mice. In contrast, disease in cmo mice was found to be independent of the nucleotide-binding domain, leucine-rich repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome as well as caspase-1. Neutrophils, but not bone marrow-derived macrophages, from cmo mice secreted increased IL-1ß in response to ATP, silica, and Pseudomonas aeruginosa compared with neutrophils from WT mice. This aberrant neutrophil response was sensitive to inhibition by serine protease inhibitors. These results demonstrate an inflammasome-independent role for IL-1ß in disease progression of cmo and implicate neutrophils and neutrophil serine proteases in disease pathogenesis. These data provide a rationale for directly targeting IL-1RI or IL-1ß as a therapeutic strategy in CRMO.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Osteomielite/imunologia , Animais , Células da Medula Óssea/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Inflamassomos/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Mutação de Sentido Incorreto , Neutrófilos/citologia , Neutrófilos/metabolismo , Osteomielite/genética , Estrutura Terciária de Proteína , Receptores de Interleucina-1/genética
7.
Immunity ; 39(2): 311-323, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23954133

RESUMO

Nlrp3 inflammasome activation occurs in response to numerous agonists but the specific mechanism by which this takes place remains unclear. All previously evaluated activators of the Nlrp3 inflammasome induce the generation of mitochondrial reactive oxygen species (ROS), suggesting a model in which ROS is a required upstream mediator of Nlrp3 inflammasome activation. Here we have identified the oxazolidinone antibiotic linezolid as a Nlrp3 agonist that activates the Nlrp3 inflammasome independently of ROS. The pathways for ROS-dependent and ROS-independent Nlrp3 activation converged upon mitochondrial dysfunction and specifically the mitochondrial lipid cardiolipin. Cardiolipin bound to Nlrp3 directly and interference with cardiolipin synthesis specifically inhibited Nlrp3 inflammasome activation. Together these data suggest that mitochondria play a critical role in the activation of the Nlrp3 inflammasome through the direct binding of Nlrp3 to cardiolipin.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Acetamidas/metabolismo , Acetamidas/farmacologia , Animais , Cardiolipinas/imunologia , Linhagem Celular , Ciclosporina/metabolismo , Ativação Enzimática , Humanos , Inflamação/induzido quimicamente , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Linezolida , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oxazolidinonas/metabolismo , Oxazolidinonas/farmacologia , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Microbes Infect ; 14(14): 1263-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22841804

RESUMO

The importance of innate immunity lies not only in directly confronting pathogenic and non-pathogenic insults but also in instructing the development of an efficient adaptive immune response. The Nlrp3 inflammasome provides a platform for the activation of caspase-1 with the subsequent processing and secretion of IL-1 family members. Given the importance of IL-1 in a variety of inflammatory diseases, understanding the role of the Nlrp3 inflammasome in the initiation of innate and adaptive immune responses cannot be overstated. This review examines recent advances in inflammasome biology with an emphasis on its roles in sterile inflammation and triggering of adaptive immune responses.


Assuntos
Imunidade Adaptativa/fisiologia , Imunidade Inata/fisiologia , Inflamassomos/imunologia , Animais , Humanos
9.
Anesthesiology ; 116(5): 1104-15, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22531249

RESUMO

BACKGROUND: The innate immune response is important in ventilator-induced lung injury (VILI) but the exact pathways involved are not elucidated. The authors studied the role of the intracellular danger sensor NLRP3 inflammasome. METHODS: NLRP3 inflammasome gene expression was analyzed in respiratory epithelial cells and alveolar macrophages obtained from ventilated patients (n = 40). In addition, wild-type and NLRP3 inflammasome deficient mice were randomized to low tidal volume (approximately 7.5 ml/kg) and high tidal volume (approximately 15 ml/kg) ventilation. The presence of uric acid in lung lavage, activation of caspase-1, and NLRP3 inflammasome gene expression in lung tissue were investigated. Moreover, mice were pretreated with interleukin-1 receptor antagonist, glibenclamide, or vehicle before start of mechanical ventilation. VILI endpoints were relative lung weights, total protein in lavage fluid, neutrophil influx, and pulmonary and systemic cytokine and chemokine concentrations. Data represent mean ± SD. RESULTS: Mechanical ventilation up-regulated messenger RNA expression levels of NLRP3 in alveolar macrophages (1.0 ± 0 vs. 1.70 ± 1.65, P less than 0.05). In mice, mechanical ventilation increased both NLRP3 and apoptosis-associated speck-like protein messenger RNA levels, respectively (1.08 ± 0.55 vs. 3.98 ± 2.89; P less than 0.001 and 0.95 ± 0.53 vs. 6.0 ± 3.55; P less than 0.001), activated caspase-1, and increased uric acid levels (6.36 ± 1.85 vs. 41.9 ± 32.0, P less than 0.001). NLRP3 inflammasome deficient mice displayed less VILI due to high tidal volume mechanical ventilation compared with wild-type mice. Furthermore, treatment with interleukin-1 receptor antagonist or glibenclamide reduced VILI. CONCLUSIONS: Mechanical ventilation induced a NLRP3 inflammasome dependent pulmonary inflammatory response. NLRP3 inflammasome deficiency partially protected mice from VILI.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Inflamassomos/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Caspase 1/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Ativação Enzimática/fisiologia , Células Epiteliais/metabolismo , Glibureto/farmacologia , Humanos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infiltração de Neutrófilos , Tamanho do Órgão/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Interleucina-1/antagonistas & inibidores , Respiração Artificial , Volume de Ventilação Pulmonar/fisiologia , Regulação para Cima/fisiologia , Ácido Úrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...