Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(3): e31484, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396734

RESUMO

The Scl gene encodes a transcription factor essential for haematopoietic development. Scl transcription is regulated by a panel of cis-elements spread over 55 kb with the most distal 3' element being located downstream of the neighbouring gene Map17, which is co-regulated with Scl in haematopoietic cells. The Scl/Map17 domain is flanked upstream by the ubiquitously expressed Sil gene and downstream by a cluster of Cyp genes active in liver, but the mechanisms responsible for delineating the domain boundaries remain unclear. Here we report identification of a DNaseI hypersensitive site at the 3' end of the Scl/Map17 domain and 45 kb downstream of the Scl transcription start site. This element is located at the boundary of active and inactive chromatin, does not function as a classical tissue-specific enhancer, binds CTCF and is both necessary and sufficient for insulator function in haematopoietic cells in vitro. Moreover, in a transgenic reporter assay, tissue-specific expression of the Scl promoter in brain was increased by incorporation of 350 bp flanking fragments from the +45 element. Our data suggests that the +45 region functions as a boundary element that separates the Scl/Map17 and Cyp transcriptional domains, and raise the possibility that this element may be useful for improving tissue-specific expression of transgenic constructs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/genética , Transcrição Gênica , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Imunoprecipitação da Cromatina , Mapeamento Cromossômico/métodos , Desoxirribonuclease I/metabolismo , Elementos Facilitadores Genéticos , Genes Reporter , Células-Tronco Hematopoéticas/citologia , Humanos , Fígado/metabolismo , Camundongos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Estrutura Terciária de Proteína , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transgenes
2.
Stem Cell Res ; 8(2): 165-79, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22265737

RESUMO

The Mixl1 homeodomain protein plays a key role in mesendoderm patterning during embryogenesis, but its target genes remain to be identified. We compared gene expression in differentiating heterozygous Mixl1(GFP/w) and homozygous null Mixl1(GFP/Hygro) mouse embryonic stem cells to identify potential downstream transcriptional targets of Mixl1. Candidate Mixl1 regulated genes whose expression was reduced in GFP+ cells isolated from differentiating Mixl1(GFP/Hygro) embryoid bodies included Pdgfrα and Flk1. Mixl1 bound to ATTA sequences located in the Pdgfrα and Flk1 promoters and chromatin immunoprecipitation assays confirmed Mixl1 occupancy of these promoters in vivo. Furthermore, Mixl1 transactivated the Pdgfrα and Flk1 promoters through ATTA sequences in a DNA binding dependent manner. These data support the hypothesis that Mixl1 directly regulates Pdgfrα and Flk1 gene expression and strengthens the position of Mixl1 as a key regulator of mesendoderm development during mammalian gastrulation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Endoderma/citologia , Endoderma/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/química , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Ativação Transcricional/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Mol Cell Biol ; 31(14): 2817-26, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21576367

RESUMO

The oncogenic transcription factor Runx1 is required for the specification of definitive hematopoietic stem cells (HSC) in the developing embryo. The activity of this master regulator is tightly controlled during development. The transcription factors that upregulate the expression of Runx1 also upregulate the expression of Smad6, the inhibitory Smad, which controls Runx1 activity by targeting it to the proteasome. Here we show that Runx1, in conjunction with Fli1, Gata2, and Scl, directly regulates the expression of Smad6 in the aorta-gonad-mesonephros (AGM) region in the developing embryo, where HSCs originate. Runx1 regulates Smad6 activity via a novel upstream enhancer, and Runx1 null embryos show reduced Smad6 transcripts in the yolk-sac and c-Kit-positive fetal liver cells. By directly regulating the expression of Smad6, Runx1 sets up a functional rheostat to control its own activity. The perturbation of this rheostat, using a proteasomal inhibitor, results in an increase in Runx1 and Smad6 levels that can be directly attributed to increased Runx1 binding to tissue-specific regulatory elements of these genes. Taken together, we describe a scenario in which a key hematopoietic transcription factor controls its own expression levels by transcriptionally controlling its controller.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Proteína Smad6/metabolismo , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião de Mamíferos/anatomia & histologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Humanos , Células K562 , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Proteína Smad6/genética
4.
Blood ; 116(16): 3013-22, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20647567

RESUMO

Glucocorticoids play a critical role in the therapy of lymphoid malignancies, including pediatric acute lymphoblastic leukemia (ALL), although the mechanisms underlying cellular resistance remain unclear. We report glucocorticoid resistance attributable to epigenetic silencing of the BIM gene in pediatric ALL biopsies and xenografts established in immune-deficient mice from direct patient explants as well as a therapeutic approach to reverse resistance in vivo. Glucocorticoid resistance in ALL xenografts was consistently associated with failure to up-regulate BIM expression after dexamethasone exposure despite confirmation of a functional glucocorticoid receptor. Although a comprehensive assessment of BIM CpG island methylation revealed no consistent changes, glucocorticoid resistance in xenografts and patient biopsies significantly correlated with decreased histone H3 acetylation. Moreover, the histone deacetylase inhibitor vorinostat relieved BIM repression and exerted synergistic antileukemic efficacy with dexamethasone in vitro and in vivo. These findings provide a novel therapeutic strategy to reverse glucocorticoid resistance and improve outcome for high-risk pediatric ALL.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Glucocorticoides/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Proteínas de Membrana/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Proteína 11 Semelhante a Bcl-2 , Criança , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Loci Gênicos , Glucocorticoides/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Vorinostat
5.
Blood ; 112(12): 4512-22, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18805961

RESUMO

Endoglin is an accessory receptor for TGF-beta signaling and is required for normal hemangioblast, early hematopoietic, and vascular development. We have previously shown that an upstream enhancer, Eng -8, together with the promoter region, mediates robust endothelial expression yet is inactive in blood. To identify hematopoietic regulatory elements, we used array-based methods to determine chromatin accessibility across the entire locus. Subsequent transgenic analysis of candidate elements showed that an endothelial enhancer at Eng +9 when combined with an element at Eng +7 functions as a strong hemato-endothelial enhancer. Chromatin immunoprecipitation (ChIP)-chip analysis demonstrated specific binding of Ets factors to the promoter as well as to the -8, +7+9 enhancers in both blood and endothelial cells. By contrast Pu.1, an Ets factor specific to the blood lineage, and Gata2 binding was only detected in blood. Gata2 was bound only at +7 and GATA motifs were required for hematopoietic activity. This modular assembly of regulators gives blood and endothelial cells the regulatory freedom to independently fine-tune gene expression and emphasizes the role of regulatory divergence in driving functional divergence.


Assuntos
Antígenos CD/genética , Sangue/metabolismo , Endotélio/metabolismo , Fatores de Transcrição GATA/fisiologia , Hemangioblastos/fisiologia , Proteína Proto-Oncogênica c-ets-1/fisiologia , Receptores de Superfície Celular/genética , Animais , Antígenos CD/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Endoglina , Fatores de Transcrição GATA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos/metabolismo , Sistema Hematopoético/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Proto-Oncogênica c-ets-1/metabolismo , Receptores de Superfície Celular/metabolismo
6.
Nucleic Acids Res ; 35(8): e56, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17389645

RESUMO

Mapping sites within the genome that are hypersensitive to digestion with DNaseI is an important method for identifying DNA elements that regulate transcription. The standard approach to locating these DNaseI-hypersensitive sites (DHSs) has been to use Southern blotting techniques, although we, and others, have recently published alternative methods using a range of technologies including high-throughput sequencing and genomic array tiling paths. In this article, we describe a novel protocol to use real-time PCR to map DHS. Advantages of the technique reported here include the small cell numbers required for each analysis, rapid, relatively low-cost experiments with minimal need for specialist equipment. Presented examples include comparative DHS mapping of known TAL1/SCL regulatory elements between human embryonic stem cells and K562 cells.


Assuntos
Mapeamento Cromossômico/métodos , Desoxirribonuclease I , Reação em Cadeia da Polimerase/métodos , Southern Blotting , Células Cultivadas , DNA/análise , Células-Tronco Embrionárias/química , Biblioteca Genômica , Humanos , Células K562 , Leucemia-Linfoma de Células T do Adulto/genética , Sequências Reguladoras de Ácido Nucleico
7.
Stem Cell Res ; 1(1): 25-36, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19383384

RESUMO

We have examined factors affecting the in vitro differentiation of Pdx1(GFP/w) ESCs to pancreatic endocrine cells. Inclusion of Bone Morphogenetic Protein 4 (BMP4) during the first four days of differentiation followed by a 24-hour pulse of retinoic acid (RA) induced the formation of GFP(+) embryoid bodies (EBs). GFP expression was restricted to E-cadherin(+) tubes and GFP bright (GFP(br)) buds, reminiscent of GFP(+) early foregut endoderm and GFP(br) pancreatic buds observed in Pdx1(GFP/w) embryos. These organoid structures developed without further addition of exogenous factors between days 5 and 12, suggesting that day 5 EBs contained a template for the subsequent phase of development. EBs treated with nicotinamide after day 12 of differentiation expressed markers of endocrine and exocrine differentiation, but only in cells within the GFP(br) buds. Analysis of Pdx1(GFP/w) ESCs modified by targeting a dsRed1 gene to the Ins1 locus (Pdx1(GFP/w)Ins1(RFP/w) ESCs) provided corroborating evidence that insulin positive cells arose from GFP(br) buds, mirroring the temporal relationship between pancreatic bud development and the formation of endocrine cells in the developing embryo. The readily detectable co-expression of GFP and RFP in grafts derived from transplanted EBs demonstrated the utility of Pdx1(GFP/w)Ins1(RFP/w) ESCs for investigating pancreatic differentiation in vitro and in vivo.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células Endócrinas/citologia , Transplante de Células-Tronco , Tretinoína/farmacologia , Animais , Técnicas de Cultura de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Camundongos , Pâncreas/citologia
8.
Genome Res ; 16(10): 1310-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16963707

RESUMO

The identification of cis-regulatory elements is central to understanding gene transcription. Hypersensitivity of cis-regulatory elements to digestion with DNaseI remains the gold-standard approach to locating such elements. Traditional methods used to identify DNaseI hypersensitive sites are cumbersome and can only be applied to short stretches of DNA at defined locations. Here we report the development of a novel genomic array-based approach to DNaseI hypersensitive site mapping (ADHM) that permits precise, large-scale identification of such sites from as few as 5 million cells. Using ADHM we identified all previously recognized hematopoietic regulatory elements across 200 kb of the mouse T-cell acute lymphocytic leukemia-1 (Tal1) locus, and, in addition, identified two novel elements within the locus, which show transcriptional regulatory activity. We further validated the ADHM protocol by mapping the DNaseI hypersensitive sites across 250 kb of the human TAL1 locus in CD34+ primary stem/progenitor cells and K562 cells and by mapping the previously known DNaseI hypersensitive sites across 240 kb of the human alpha-globin locus in K562 cells. ADHM provides a powerful approach to identifying DNaseI hypersensitive sites across large genomic regions.


Assuntos
Desoxirribonuclease I/metabolismo , Genômica/métodos , Análise em Microsséries/métodos , Elementos Reguladores de Transcrição/genética , Mapeamento por Restrição/métodos , Algoritmos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Avaliação como Assunto , Humanos , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Ubiquitina-Proteína Ligases/genética
9.
Diabetes ; 54(2): 301-5, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15585742

RESUMO

We have generated an embryonic stem (ES) cell line in which sequences encoding green fluorescent protein (GFP) were targeted to the locus of the pancreatic-duodenal homeobox gene (Pdx1). Analysis of chimeric embryos derived from blastocyst injection of Pdx1(GFP/w) ES cells demonstrated that the pattern of GFP expression was consistent with that reported for the endogenous Pdx1 gene. By monitoring GFP expression during the course of ES cell differentiation, we have shown that retinoic acid (RA) can regulate the commitment of ES cells to form Pdx1(+) pancreatic endoderm. RA was most effective at inducing Pdx1 expression when added to cultures at day 4 of ES differentiation, a period corresponding to the end of gastrulation in the embryo. RT-PCR analysis showed that Pdx1-positive cells from day 8 cultures expressed the early endoderm markers Ptf1a, Foxa2, Hnf4alpha, Hnf1beta, and Hnf6, consistent with the notion that they corresponded to the early pancreatic endoderm present in the embryonic day 9.5 mouse embryo. These results demonstrate the utility of Pdx1(GFP/w) ES cells as a tool for monitoring the effects of factors that influence pancreatic differentiation from ES cells.


Assuntos
Endoderma/fisiologia , Proteínas de Homeodomínio/genética , Células-Tronco/citologia , Células-Tronco/fisiologia , Transativadores/genética , Tretinoína/farmacologia , Animais , Sequência de Bases , Blastocisto/citologia , Blastocisto/fisiologia , Diferenciação Celular , Quimera , Primers do DNA , Endoderma/efeitos dos fármacos , Genes Reporter , Camundongos , Camundongos Transgênicos , Pâncreas/citologia , Pâncreas/embriologia , Reação em Cadeia da Polimerase , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...