Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2306345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146105

RESUMO

Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.

2.
Adv Sci (Weinh) ; 8(8): 2004458, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33898199

RESUMO

Inspired by the movement of bacteria and other microorganisms, researchers have developed artificial helical micro- and nanorobots that can perform corkscrew locomotion or helical path swimming under external energy actuation. In this paper, for the first time the locomotion of nonhelical multifunctional nanorobots that can swim in helical klinotactic trajectories, similarly to rod-shaped bacteria, under rotating magnetic fields is investigated. These nanorobots consist of a rigid ferromagnetic nickel head connected to a rhodium tail by a flexible hydrogel-based hollow hinge composed of chemically responsive chitosan and alginate multilayers. This design allows nanoswimmers switching between different dynamic behaviors-from in-plane tumbling to helical klinotactic swimming-by varying the rotating magnetic field frequency and strength. It also adds a rich spectrum of swimming capabilities that can be adjusted by varying the type of applied magnetic fields and/or frequencies. A theoretical model is developed to analyze the propulsion mechanisms and predict the swimming behavior at distinct rotating magnetic frequencies. The model shows good agreement with the experimental results. Additionally, the biomedical capabilities of the nanoswimmers as drug delivery platforms are demonstrated. Unlike previous designs constitute metallic segments, the proposed nanoswimmers can encapsulate drugs into their hollow hinge and successfully release them to cells.

3.
Small ; 15(16): e1805006, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30829003

RESUMO

Biocompatibility and high responsiveness to magnetic fields are fundamental requisites to translate magnetic small-scale robots into clinical applications. The magnetic element iron exhibits the highest saturation magnetization and magnetic susceptibility while exhibiting excellent biocompatibility characteristics. Here, a process to reliably fabricate iron microrobots by means of template-assisted electrodeposition in 3D-printed micromolds is presented. The 3D molds are fabricated using a modified two-photon absorption configuration, which overcomes previous limitations such as the use of transparent substrates, low writing speeds, and limited depth of field. By optimizing the geometrical parameters of the 3D molds, metallic structures with complex features can be fabricated. Fe microrollers and microswimmers are realized that demonstrate motion at ≈20 body lengths per second, perform 3D motion in viscous environments, and overcome higher flow velocities than those of "conventional 3D printed helical microswimmers." The cytotoxicity of these microrobots is assessed by culturing them with human colorectal cancer (HCT116) cells for four days, demonstrating their good biocompatibility characteristics. Finally, preliminary results regarding the degradation of iron structures in simulated gastric acid liquid are provided.


Assuntos
Ferro/química , Campos Magnéticos , Microtecnologia/métodos , Impressão Tridimensional/instrumentação , Robótica/instrumentação , Materiais Biocompatíveis , Eletroquímica , Galvanoplastia , Células HCT116 , Humanos , Hidrogênio/química , Imãs , Microfluídica , Robótica/métodos , Propriedades de Superfície
4.
ACS Appl Mater Interfaces ; 11(3): 3214-3223, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30588788

RESUMO

We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires' speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.

5.
Nanotechnology ; 29(40): 405502, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29998847

RESUMO

Recent advances in nanorobotic manipulation of ferromagnetic nanowires bring new avenues for applications in the biomedical area, such as targeted drug delivery, diagnostics or localized surgery. However, probing a single nanowire and monitoring its dynamics remains a challenge since it demands high precision sensing, high-resolution imaging, and stable operations in fluidic environments. Here, we report on a novel method of imaging and sensing magnetic fields from a single ferromagnetic nanowire with an atomic-scale sensor in diamond, i.e. diamond nitrogen-vacancy (NV) defect center. The distribution of static magnetic fields around a single Co nanowire is mapped out by spatially distributed NV centers and the obtained image is further compared with numerical simulation for quantitative analysis. DC field measurements such as continuous-wave ODMR and Ramsey sequence are used in the paper and sub Gauss level of field sensing is demonstrated. By imaging magnetic fields at a single nanowire level, this work represents an important step toward tracking and probing of ferromagnetic nanowires in biomedical applications.

6.
Adv Mater ; 30(15): e1705061, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29443430

RESUMO

Micro- and nanorobots have shown great potential for applications in various fields, including minimally invasive surgery, targeted therapy, cell manipulation, environmental monitoring, and water remediation. Recent progress in the design, fabrication, and operation of these miniaturized devices has greatly enhanced their versatility. In this report, the most recent progress on the manipulation of small-scale robots based on power sources, such as magnetic fields, light, acoustic waves, electric fields, thermal energy, or combinations of these, is surveyed. The design and propulsion mechanism of micro- and nanorobots are the focus of this article. Their fabrication and applications are also briefly discussed.

7.
ACS Nano ; 11(6): 6146-6154, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28590716

RESUMO

Conventional photocatalytic micromotors are limited to the use of specific wavelengths of light due to their narrow light absorption spectrum, which limits their effectiveness for applications in biomedicine and environmental remediation. We present a multiwavelength light-responsive Janus micromotor consisting of a black TiO2 microsphere asymmetrically coated with a thin Au layer. The black TiO2 microspheres exhibit absorption ranges between 300 and 800 nm. The Janus micromotors are propelled by light, both in H2O2 solutions and in pure H2O over a broad range of wavelengths including UV, blue, cyan, green, and red light. An analysis of the particles' motion shows that the motor speed decreases with increasing wavelength, which has not been previously realized. A significant increase in motor speed is observed when exploiting the entire visible light spectrum (>400 nm), suggesting a potential use of solar energy, which contains a great portion of visible light. Finally, stop-go motion is also demonstrated by controlling the visible light illumination, a necessary feature for the steerability of micro- and nanomachines.

8.
Lab Chip ; 17(9): 1678, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28426092

RESUMO

Correction for 'High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes' by Chengzhi Hu et al., Lab Chip, 2017, 17, 671-680.

9.
Lab Chip ; 17(4): 671-680, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28098283

RESUMO

Pollen tubes are tip-growing plant cells that deliver the sperm cells to the ovules for double fertilization of the egg cell and the endosperm. Various directional cues can trigger the reorientation of pollen tube growth direction on their passage through the female tissues. Among the external stimuli, protons serve an important, regulatory role in the control of pollen tube growth. The generation of local guidance cues has been challenging when investigating the mechanisms of perception and processing of such directional triggers in pollen tubes. Here, we developed and characterized a microelectrode device to generate a local proton gradient and proton flux through water electrolysis. We confirmed that the cytoplasmic pH of pollen tubes varied with environmental pH change. Depending on the position of the pollen tube tip relative to the proton gradient, we observed alterations in the growth behavior, such as bursting at the tip, change in growth direction, or complete growth arrest. Bursting and growth arrest support the hypothesis that changes in the extracellular H+ concentration may interfere with cell wall integrity and actin polymerization at the growing tip. A change in growth direction for some pollen tubes implies that they can perceive the local proton gradient and respond to it. We also showed that the growth rate is directly correlated with the extracellular pH in the tip region. Our microelectrode approach provides a simple method to generate protons and investigate their effect on plant cell growth.


Assuntos
Microeletrodos , Tubo Polínico , Prótons , Técnicas de Cultura de Tecidos/métodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Dispositivos Lab-On-A-Chip , Lilium/citologia , Lilium/crescimento & desenvolvimento , Lilium/fisiologia , Tubo Polínico/citologia , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Técnicas de Cultura de Tecidos/instrumentação
10.
ACS Nano ; 10(11): 9983-9991, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27754654

RESUMO

We report Au/Ru core-shell nanowire motors. These nanowires are fabricated using our previously developed electrodeposition-based technique, and their catalytic locomotion in the presence of H2O2 is investigated. Unlike conventional bimetallic nanowires that are self-electroosmotically propelled, our open-ended Au/Ru core-shell nanowires show both a noticeable decrease in rotational diffusivity and increase in motor speed with increasing nanowire length. Numerical modeling based on self-electroosmosis attributes decreases in rotational diffusivity to the formation of toroidal vortices at the nanowire tail, but fails to explain the speed increase with length. To reconcile this inconsistency, we propose a combined mechanism of self-diffusiophoresis and electroosmosis based on the oxygen gradient produced by catalytic shells. This mechanism successfully explains not only the speed increase of Au/Ru core-shell nanomotors with increasing length, but also the large variation in speed among Au/Ru, Au/Rh, and Rh/Au core-shell nanomotors. The possible contribution of diffusiophoresis to an otherwise well-established electroosmotic mechanism sheds light on future designs of nanomotors, at the same time highlighting the complex nature of nanoscale propulsion.

11.
Small ; 12(46): 6363-6369, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27690370

RESUMO

Ferromagnetic nanowires are finding use as untethered sensors and actuators for probing micro- and nanoscale biophysical phenomena, such as for localized sensing and application of forces and torques on biological samples, for tissue heating through magnetic hyperthermia, and for microrheology. Quantifying the magnetic properties of individual isolated nanowires is crucial for such applications. Dynamic cantilever magnetometry is used to measure the magnetic properties of individual sub-500 nm diameter polycrystalline nanowires of Ni and Ni80 Co20 fabricated by template-assisted electrochemical deposition. The values are compared with bulk, ensemble measurements when the nanowires are still embedded within their growth matrix. It is found that single-particle and ensemble measurements of nanowires yield significantly different results that reflect inter-nanowire interactions and chemical modifications of the sample during the release process from the growth matrix. The results highlight the importance of performing single-particle characterization for objects that will be used as individual magnetic nanoactuators or nanosensors in biomedical applications.


Assuntos
Magnetometria/métodos , Nanotecnologia/métodos , Nanofios/química , Imãs/química
12.
Nano Lett ; 16(8): 4968-74, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27459382

RESUMO

Recent studies have garnered considerable interest in the field of propulsion to maneuver micro- and nanosized objects. Acoustics provide an alternate and attractive method to generate propulsion. To date, most acoustic-based swimmers do not use structural resonances, and their motion is determined by a combination of bulk acoustic streaming and a standing-wave field. The resultant field is intrinsically dependent on the boundaries of their resonating chambers. Though acoustic based propulsion is appealing in biological contexts, existing swimmers are less efficient, especially when operating in vivo, since no predictable standing-wave can be established in a human body. Here we describe a new class of nanoswimmer propelled by the small-amplitude oscillation of a flagellum-like flexible tail in standing and, more importantly, in traveling acoustic waves. The artificial nanoswimmer, fabricated by multistep electrodeposition techniques, compromises a rigid bimetallic head and a flexible tail. During acoustic excitation of the nanoswimmer the tail structure oscillates, which leads to a large amplitude propulsion in traveling waves. FEM simulation results show that the structural resonances lead to high propulsive forces.

13.
Nanoscale Horiz ; 1(6): 488-495, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32260713

RESUMO

We report a novel atomic force microscopy (AFM) technique with dual actuation capabilities using both piezo and magnetic bead actuation for advanced single-molecule force spectroscopy experiments. The experiments are performed by manipulating magnetic microbeads using an electromagnet against a stationary cantilever. Magnetic actuation has been demonstrated before to actuate cantilevers, but here we keep the cantilever stationary and accomplish actuation via free-manipulated microstructures. The developed method benefits from significant reduction of drift, since the experiments are performed without a substrate contact and the measured force is inherently differential. In addition, shrinking the size of the actuator can minimize hydrodynamic forces affecting the cantilever. The new method reported herein allows for the application of constant force to perform force-clamp experiments without any active feedback, profiled for a deeper understanding of biomolecular interactions.

14.
Nano Lett ; 15(7): 4829-33, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26029795

RESUMO

Micro- and nanorobots operating in low Reynolds number fluid environments require specialized swimming strategies for efficient locomotion. Prior research has focused on designs mimicking the rotary corkscrew motion of bacterial flagella or the planar beating motion of eukaryotic flagella. These biologically inspired designs are typically of uniform construction along their flagellar axis. This work demonstrates for the first time planar undulations of composite multilink nanowire-based chains (diameter 200 nm) induced by a planar-oscillating magnetic field. Those chains comprise an elastic eukaryote-like polypyrrole tail and rigid magnetic nickel links connected by flexible polymer bilayer hinges. The multilink design exhibits a high swimming efficiency. Furthermore, the manufacturing process enables tuning the geometrical and material properties to specific applications.

15.
ACS Appl Mater Interfaces ; 6(16): 14583-9, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25025496

RESUMO

Electrodeposition is a versatile method, which enables the fabrication of a variety of wire-like nanoarchitectures such as nanowires, nanorods, and nanotubes. By means of template-assisted electrodeposition, segmented Au/Co/Au nanowires are grown in anodic aluminum oxide templates from two different electrolytes. To tailor the properties of the cobalt segments, several electrochemical conditions are studied as a function of current density, pulse deposition, and pH. The morphology, crystal structure, and magnetic properties are accordingly investigated. Changes in the deposition conditions affect the cobalt electrocrystallization process directly. Cobalt tends to crystallize mainly in the hexagonal close-packed structure, which is the reason cobalt might not accommodate satisfactorily on the face-centered cubic Au surface or vice versa. We demonstrate that by modifying the electrolyte and the applied current densities, changes in the texture and the crystalline structure of cobalt lead to a good quality connection between dissimilar segments. In particular, lowering the bath pH, or using pulse plating at a high overpotential, produces polycrystalline fcc Co and thus well-connected Co/Au bimetallic junctions with smooth interface. These are crucial factors to be carefully considered taking into account that nanowires are potential building blocks in micro- and nanoelectromechanical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...