Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 232: 116350, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290619

RESUMO

The performance of a moving bed biofilm reactor (MBBR) depends largely on the type of biofilm carrier used. However, how different carriers affect the nitrification process, particularly when treating anaerobic digestion effluents, is not completely understood. This study aimed to evaluate the nitrification performance of two distinct biocarriers in MBBRs over a 140-d operation period, with a gradually decreasing hydraulic retention time (HRT) from 20 to 10 d. Reactor 1 (R1) was filled with fiber balls, whereas a Mutag Biochip was used for reactor 2 (R2). At an HRT of 20 d, the ammonia removal efficiency of both reactors was >95%. However, as the HRT was reduced, the ammonia removal efficiency of R1 gradually declined, ultimately dropping to 65% at a 10-d HRT. In contrast, the ammonia removal efficiency of R2 consistently exceeding 99% throughout the long-term operation. R1 exhibited partial nitrification, whereas R2 exhibited complete nitrification. Analysis of microbial communities showed that the abundance and diversity of bacterial communities, particularly nitrifying bacteria such as Hyphomicrobium sp. And Nitrosomonas sp., in R2 was higher than that in R1. In conclusion, the choice of biocarrier significantly impact the abundance and diversity of microbial communities in MBBR systems. Therefore, these factors should be closely monitored to ensure the efficient treatment of high-strength ammonia wastewater.


Assuntos
Microbiota , Nitrificação , Amônia , Biofilmes , Anaerobiose , Reatores Biológicos/microbiologia , Bactérias , Eliminação de Resíduos Líquidos
2.
Front Microbiol ; 14: 1180018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266025

RESUMO

Due to the high global warming potential (GWP) in a short time scale (GWP100 = 28 vs. GWP20 = 86), mitigating CH4 emissions could have an early impact on reducing current global warming effects. The manure storage tank emits a significant amount of CH4, which can diminish the environmental benefit resulting from the anaerobic digestion of manure that can generate renewable energy. In the present study, we added the reverse osmosis concentrate (ROC) rich in salt to the pig slurry (PS) storage tank to reduce CH4 emissions. Simultaneously, pure NaCl was tested at the same concentration to compare and verify the performance of ROC addition. During 40 days of storage, 1.83 kg CH4/ton PS was emitted, which was reduced by 7-75% by the addition of ROC at 1-9 g Na+/L. This decrease was found to be more intensive than that found upon adding pure sodium, which was caused by the presence of sulfate rich in ROC, resulting in synergistic inhibition. The results of the microbial community and activity test showed that sodium directly inhibited methanogenic activity rather than acidogenic activity. In the subsequent biogas production from the stored PS, more CH4 was obtained by ROC addition due to the preservation of organic matter during storage. Overall, 51.2 kg CO2 eq./ton PS was emitted during the storage, while 8 kg CO2 eq./ton PS was reduced by biogas production in the case of control, resulting in a total of 43.2 kg CO2 eq./ton PS. This amount of greenhouse gas emissions was reduced by ROC addition at 5 g Na+/L by 22 and 65 kg CO2 eq./ton PS, considering GWP100 and GWP20 of CH4, respectively, where most of the reduction was achieved during the storage process. To the best of our knowledge, this was the first report using salty waste to reduce GHG emissions in a proper place, e.g., a manure storage tank.

3.
Water Res ; 240: 120085, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244016

RESUMO

Membrane-based wastewater reclamation is used to mitigate water scarcity; however, irreversible biofouling is an elusive problem that hinders the efficiency of a forward-osmosis (FO) membrane-based process, and the protein responsible for fouling is unknown. Herein, we identified fouling proteins by analyzing the microbiome and proteome of wastewater extracellular polymeric substances responsible for strong irreversible FO-membrane fouling. The IGLSSLPR peptide of a PilZ domain-containing protein was found to recruit bacterial attachment when immobilized on the membrane surface while suppressing it when dissolved, in a similar manner to the Arg-Gly-Asp (RGD) peptide in mammalian cell cultures. Bacteria adhere to IGLSSLPR and poly-l-lysine-coated membranes with similar energies and exhibit water fluxes that decline similarly, which is ascribable to interaction as strong as electrostatic interactions in the peptide-coated membranes. We conclude that IGLSSLPR is the key domain responsible for membrane fouling and can be used to develop antifouling technology against bacteria, which is similar to the current usage of RGD peptide in mammalian cell cultures.


Assuntos
Incrustação Biológica , Purificação da Água , Águas Residuárias , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Peptídeos , Osmose , Bactérias
4.
Chemosphere ; 313: 137596, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538953

RESUMO

Coagulation has been evaluated as an economical and effective pre-treatment method for controlling membrane fouling. We investigated the influence of the pre-coagulation of oil-water (O/W) emulsions on the formation of membrane fouling in the ceramic membrane process. The results confirmed that pre-coagulation effectively mitigated the fouling formation on the ceramic membrane surface during the O/W emulsion separation. The mechanism of mitigating membrane fouling by pre-coagulation was proposed, owing to the reduction in the zeta potential value of oil droplets by pre-coagulation, resulting in weak electrostatic attraction between oil droplets and ceramic membrane surfaces, and an increase in the size of the oil droplets by pre-coagulation, leading the formation of a cake layer fouling. In addition, the decrease in the hydrophobicity of oil droplets by pre-coagulation resulted in alleviating the hydrophobic interaction between oil droplets and membrane surface. The proposed fouling mechanism was supported by the characterization of the virgin and fouled membrane surfaces and the analysis of the fouling resistance ability of the membranes. Our study could be indicative of mitigation protocols that can be used to alleviate membrane fouling on ceramic membranes during oily wastewater treatment.


Assuntos
Óleos , Purificação da Água , Emulsões , Óleos/química , Cerâmica/química , Água , Membranas Artificiais , Purificação da Água/métodos
5.
Chemosphere ; 309(Pt 1): 136648, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183878

RESUMO

Although membrane contactors (MCs) have been recognized to be an efficient approach for the removal of ammonia from water streams, factors affecting the MCs performance were not clearly investigated. In this study, the effects of stripping solution chemistry (acid types and concentration), feed solution chemistry (pH, temperature, and ammonia concentration), and stages of MCs system have been comprehensively evaluated. Interestingly, the type of stripping solutions significantly affected the removal of ammonia, and the comparative effectiveness were in the order of H3PO4 > H2SO4 > HCOOH. However, the concentration of stripping solutions and ammonia in the feed has little impact to the performance of MCs. Among the feed solution chemistry, pH and temperature were the most crucial factors for ammonia removal in MCs, because the increase of pH and temperature enhanced the free ammonia fraction in the solution and facilitated the mass transfer through pores. At the absorbent concentration of 0.5 M H3PO4, pH of 10, and temperature of 40 °C, single-stage MCs could achieve 51% of ammonia removal within 40 s, and the ammonia removal rate in two-stage MCs reached 90% at the 1.5 min of hydraulic retention time (HRT). The results suggested the superior feasibility of multi-stage MCs system compare to the conventional stripping processes for the removal of ammonia in various waste or wastewater.


Assuntos
Amônia , Poluentes Químicos da Água , Amônia/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Temperatura , Água
6.
Chemosphere ; 303(Pt 1): 134814, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35525449

RESUMO

This study investigates the suitability of forward osmosis (FO) for recovery of volatile fatty acids (VFAs) from anaerobic digesters (ADs) and identifies the conditions favorable for commercially viable maximum recovery of VFAs. The recovery efficiency of VFAs is evaluated using a polyamide (PA)-based thin-film composite (TFC) membrane. The pH (3, 5, 7, and 9), temperature (20 °C and 40 °C), and membrane orientation (active-layer [AL]-facing FS and AL facingDS) were changed, and water flux, reverse salt flux (RSF), rejection rate, and concentration factor (CF) were evaluated for five VFAs. The water flux and RSF were higher at a higher pH, temperature and in AL-DS mode. A low rejection rate of 23-36% and a CF of 0.20-1.90 were observed at a pH below the pKa due to the solubility of molecular VFAs, while rejection rates was 80-97% and concentration increase by 1 to 4.8-fold at a pH above the pKa values were achieved due to deprotonation of VFAs and changes in membrane surface charges. With an equal increase in temperature of FS and DS from 20 to 40 °C, the rejection rate decreased by almost 20%. While with a transmembrane temperature change, a decrease in rejection rate of 20% was observed compared with baseline experiments due to decreases in viscosity and high diffusivity. In AL-DS mode, VFAs were rejected at a rate of almost 20% lower than that in AL-FS mode due to internal concentration polarization and membrane properties. These findings provide useful information on the factors that can influence optimal recovery rates of VFAs.


Assuntos
Purificação da Água , Ácidos Graxos Voláteis , Membranas Artificiais , Osmose , Cloreto de Sódio , Soluções , Temperatura , Água
7.
Sci Total Environ ; 639: 673-678, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803038

RESUMO

To elucidate the transport of emerging contaminants (CECs) in forward osmosis (FO) membrane process according to their solute properties, the rejections of CECs with various molecular weight, octanol/water partition coefficient (log Kow), and dissociation constant (pKa) were investigated. Among 12 selected CECs, negatively charged CECs exhibited the highest rejection efficiency than neutral or positively charged CECs due to the electrostatic repulsion between negatively charged CECs and membrane surfaces as well as diffusional hindrance by reversely transported salts from draw stream. The statistical analysis showed that the molecular weight was strongly correlated with the rejection of neutral CECs by size exclusion. Moreover, the correlation between adsorption and log Kow value of neutral CECs was observed due to the hydrophobic interaction. Positively charged CECs exhibited higher adsorption, but lower rejection than the negatively charged CECs due to the locally increased concentration by adsorption, and subsequent migration in FO membrane.

8.
Genes Genet Syst ; 91(5): 245-256, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27582185

RESUMO

A high-salt environment represents environmental stress for most plants. Those that can grow and thrive in such an environment must have membrane transport systems that can respond effectively. Plant roots absorb Na+ from the soil, and the plant must maintain Na+ homeostasis to survive salt stress. A major mechanism by which salt-tolerant plants adapt to salt stress is through modulation of ion transport genes. We have subjected a population of rice plants to mutagenesis, and identified lines with both single-nucleotide polymorphisms (SNPs) in membrane transport genes and altered responses to salt stress. Primers labeled with FAM or HEX fluorescent dyes were designed for nine target genes encoding membrane transport proteins that are believed to regulate salt stress tolerance. A TILLING (Targeting Induced Local Lesions IN Genome) assay was performed on 2,961 M2 rice mutant lines using electrophoresis. After the TILLING assay, a total of 41 mutant lines containing SNPs in the target genes were identified and screened. The average number of mutations per gene was 1/492 kb in lines having SNPs, and the percentage of mutation sites per total sequence was 0.67. Among the 41 lines, nine had altered sequences in the exon region of the genes. Of these nine lines, seven were tolerant to salt stress after exposure to 170 mM NaCl for three weeks, while the other two lines were not more salt-tolerant than the control lines. Furthermore, five mutant lines containing SNPs in the coding region of OsAKT1, OsHKT6, OsNSCC2, OsHAK11 and OsSOS1 showed changed expression levels for each gene. We conclude that variation in membrane transport genes, such as expression levels and protein structures, may affect the rice plant's tolerance to salt stress. These mutations represent traits that may be selected for large rice mutant populations, permitting efficient acquisition of salt-tolerant lines.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/efeitos da radiação , Oryza/genética , Oryza/efeitos da radiação , Primers do DNA , Raios gama , Mutagênese , Mutação/efeitos da radiação , Fenótipo , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Tolerância ao Sal/efeitos da radiação , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação
9.
J Ginseng Res ; 37(3): 332-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24198659

RESUMO

In this study, gamma rays were used to irradiate embryogenic calli induced from cotyledon explants of Panax ginseng Meyer. After the embryogenic calli were irradiated, they were transferred to adventitious roots using an induction medium; next, mutated adventitious root (MAR) lines with a high frequency of adventitious root formations were selected. Two MAR lines (MAR 5-2 and MAR 5-9) from the calli treated with 50 Gy of gamma rays were cultured on an NH4NO3-free Murashige and Skoog medium with indole-3-butyric acid 3 mg/L. The expression of genes related to ginsenoside biosynthesis was analyzed using reverse transcription polymerase chain reaction with RNA prepared from native ginseng (NG), non-irradiated adventitious root (NAR) and 2 MAR lines. The expression of the squalene epoxidase and dammarenediol synthase genes was increased in the MAR 5-2 line, whereas the phytosterol synthase was increased in the MAR 5-9 line. The content and pattern of major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) were analyzed in the NG, NAR, and 2 MAR lines (MAR 5-2 and MAR 5-9) using TLC and HPLC. In the TLC analysis, the ginsenoside patterns in the NG, NAR, and 2 MAR lines were similar; in contrast, the MAR 5-9 line showed strong bands of primary ginsenosides. In the HPLC analysis, compared with the NG, one new type of ginsenoside was observed in the NAR and 2 MAR lines, and another new type of ginsenoside was observed in the 2 MAR lines irradiated with gamma rays. The ginsenoside content of the MAR 5-9 line was significantly greater in comparison to the NG.

10.
Bioresour Technol ; 141: 50-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23561950

RESUMO

This study investigated the effects of high salinity on the performance and membrane fouling of membrane bioreactor (MBR) with saline wastewater. Synthetic wastewaters containing 5-20 g/L salts (NaCl) were treated in identical lab-scale (7 L) MBRs monitoring removals of dissolved organic carbon (DOC) and ammonia. Increase in salt concentrations did not significantly change the removal efficiency of DOC in the MBRs. However, the ammonia removals decreased from 87% to 46% with increasing salt concentrations. PCR-DGGE analysis indicated changes in the microbial communities' composition due to high salinity; and the changes in microbial composition in turn have affected the performance of the MBRs. Membrane fouling was accelerated by the increased pore blocking resistance at higher salt concentrations. Analysis results of physicochemical and biological characteristics of biomass (EPS, floc size, zeta potential) verified the impacts of high salinity on the increased membrane fouling.


Assuntos
Reatores Biológicos , Cloreto de Sódio/química , Amônia/análise , Amônia/química , Biomassa , Membranas Artificiais , Tamanho da Partícula , Esgotos/química , Cloreto de Sódio/análise , Águas Residuárias/química , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...