Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 33(9): 1232-1241, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776991

RESUMO

Everolimus inhibits stent restenosis and the WKYMV (fluorescein isothiocyanate) peptide promotes endothelial homing. Dextran is a natural polymer that is widely used as a pharmaceutical agent. The purpose of this study was to develop a double-drug-coated stent using a bidirectional coating system and to examine the surface shape with in vitro experiments. Stent length was 16 mm and strut thickness was 70 µm (Chonnam National University Hospital Tiger stent). Optical and scanning electron microscopy showed good coating without cracks or bubbles. Fluorescein isothiocyanate-peptide was dip-coated on the lumen and the abluminal surface was coated with everolimus and dextran. Stents were coated with dextran, everolimus, or everolimus-dextran. The radial force and flexibility were measured to determine the mechanical properties. Contact angle testing was performed in all groups. Dextran and peptide as hydrophilic substances and everolimus as a hydrophobic substance were each coated on cover glasses (cobalt-chromium). A10 and human umbilical vein endothelial cells were used in the experiments. Water and dimethyl sulfoxide served as a control, and three drug groups were tested: peptide-everolimus, everolimus-dextran, and peptide-everolimus-dextran. Immunocytochemistry was performed to assess cell adhesion. Light intensity was plotted according to the average on nuclear staining. Experiments were conducted using 5-bromo-2'-deoxyuridine to investigate A10 and human umbilical vein endothelial cell proliferation. Cell adhesion and proliferation of peptide-everolimus-dextran were inhibited at A10, and human umbilical vein endothelial cell was found to proliferate with cell adhesion. On conclusion, dextran and peptide-everolimus bidirectional stent is effective in re-endothelialization and inhibition of cell proliferation.


Assuntos
Dextranos/administração & dosagem , Stents Farmacológicos , Everolimo/administração & dosagem , Oligopeptídeos/administração & dosagem , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Dextranos/química , Dextranos/farmacologia , Sistemas de Liberação de Medicamentos , Everolimo/química , Everolimo/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ratos
2.
Mater Sci Eng C Mater Biol Appl ; 91: 615-623, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033294

RESUMO

Inflammation and thrombosis are linked to the use of polymer-based drug-eluting stents (DES). The aim of this study was to develop a polymer-free everolimus (EVL)-eluting stent using nitrogen-doped titanium dioxide (N-TiO2) and verify its efficacy by in vitro and in vivo assessment in a porcine coronary model. Various analytical approaches such as scanning electron microscopy and atomic force microscopy, electron spectroscopy, Fourier transform infrared spectrometry and contact angle measurement were employed for the characterization. As a part of biocompatibility assessment, platelet adhesion and smooth muscle cell (SMC) proliferation were examined. Bare metal stent (BMS), N-TiO2 stent, everolimus-eluting N-TiO2 (N-TiO2-EVL) stent, and commercialized EVL-eluting stent (EES) were randomly placed in forty coronary arteries in twenty pigs. After four weeks of implantation, the stents were subjected to histological and quantitative analysis. The N-TiO2 film used in this study was well coated without any cracks or peeling. Surface hydrophilicity (88.8% of angle decrement) could be associated with the decrease in surface roughness post N-TiO2 deposition (37.0%). The platelet adhesion on the N-TiO2 surfaces was less than that on the BMS surface. The proliferation of SMC was suppressed in the N-TiO2-EVL group (30.2%) but not in the BMS group. In the animal study, the percent area restenosis was significantly decreased in the N-TiO2-EVL group compared to that in the BMS group. The results (BMS; 47.0 ±â€¯11.00%, N-TiO2-EVL; 31.7 ±â€¯10.50%, and EES; 29.1 ±â€¯11.21%, n = 10, p < 0.05) were almost at par with those of the commercialized EVL-eluting stent. The introduction of N-TiO2 deposition during fabrication of polymer-free DES may be an efficient accessorial process for preventing in-stent restenosis and thrombosis.


Assuntos
Stents Farmacológicos , Everolimo/farmacologia , Nitrogênio/química , Polímeros/química , Titânio/química , Animais , Proliferação de Células/efeitos dos fármacos , Reestenose Coronária/patologia , Modelos Animais de Doenças , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Sus scrofa , Tomografia de Coerência Óptica
3.
J Biomater Appl ; 32(8): 1083-1089, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29256322

RESUMO

The first two authors contributed equally to this study. Bioactivity and cell adhesion properties are major factors for fabricating medical devices such as coronary stents. The aim of this study was to evaluate the advantages of atmospheric-pressure plasma jet in enhancing the biocompatibility and endothelial cell-favorites. The experimental objects were divided into before and after atmospheric-pressure plasma jet treatment with the ratio of nitrogen:argon = 3:1, which is similar to air. The treated surfaces were basically characterized by means of a contact angle analyzer for the activation property on their surfaces. The effect of atmospheric-pressure plasma jet on cellular response was examined by endothelial cell adhesion and XTT analysis. It was difficult to detect any changeable morphology after atmospheric-pressure plasma jet treatment on the surface. The roughness was increased after atmospheric-pressure plasma jet treatment compared to nonatmospheric-pressure plasma jet treatment (86.781 and 7.964 nm, respectively). The X-ray photoelectron spectroscopy results showed that the surface concentration of the C-O groups increased slightly from 6% to 8% after plasma activation. The contact angle dramatically decreased in the atmospheric-pressure plasma jet treated group (22.6 ± 15.26°) compared to the nonatmospheric-pressure plasma jet treated group (72.4 ± 15.26°) ( n = 10, p < 0.05). The effect of the increment in hydrophilicity due to the atmospheric-pressure plasma jet on endothelial cell migration and proliferation was 85.2% ± 12.01% and 34.2% ± 2.68%, respectively, at 7 days, compared to the nonatmospheric-pressure plasma jet treated group (58.2% ± 11.44% in migration, n = 10, p < 0.05). Taken together, the stent surface could easily obtain a hydrophilic property by the atmospheric-pressure plasma jet method. Moreover, the atmospheric-pressure plasma jet might affect re-endothelialization after stenting.


Assuntos
Materiais Biocompatíveis/química , Células Endoteliais/citologia , Gases em Plasma/química , Stents , Pressão Atmosférica , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
4.
J Biomed Mater Res B Appl Biomater ; 106(4): 1486-1495, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28691192

RESUMO

The aim of this study was to evaluate the effects of bilirubin- and/or everolimus (EVL)-coated stents to prevent arterial neointimal hyperplasia and inflammation in vitro and in vivo. The stents were prepared by spray coating bare metal stents (BMS) with bilirubin and/or EVL. Study groups were divided into (1) BMS, (2) bilirubin-coated stents (BES), (3) commercialized stents (Synergy™; EES), and (4) bilirubin/EVL-coated stents (B-EES). The coating thickness and drug release rates were comparable to previous reports (i.e., <4 µm thickness and 50% drug release in 7 days). Smooth muscle cell migration was inhibited in both EVL-containing groups (20.5 ± 3.80% in EES and 18.4 ± 2.55% in B-EES) compared to the non-EVL-containing groups (78.0 ± 6.41% in BMS and 76.1 ± 4.88% in BES) (n = 10, p < 0.05). Stents were randomly implanted to 40 coronary arteries in 20 pigs and subjected to various analyses after 4 weeks of implantation. As results, the inflammation score was dramatically increased in the EES group (2.1 ± 0.42) compared to that of the other groups (1.5 ± 0.55, 1.3 ± 0.23, and 1.5 ± 0.27 for BMS, BES, and B-EES, respectively, n = 10, p < 0.05). Immunofluorescence analysis revealed that inflammation was prevented in the bilirubin-containing groups (BES and B-EES). However, the percent area of restenosis was decreased in the EVL-containing groups (20.5 ± 4.11% for EES and 18.4 ± 3.61% for B-EES) compared to the non-EVL-containing groups (32.3 ± 6.41% for BMS and 29.6 ± 5.95% for BES, n = 10, p < 0.05). The percent areas of restenosis determined by histopathology, optical coherence tomography, and micro-computed tomography were consistent. In addition, the stent was barely covered in the EES and B-EES groups at 4 weeks postimplantation. These dual drug-coated stents may be especially beneficial to patients who have an increased risk of inflammation. These stents have great potential for use in cardiovascular applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1486-1495, 2018.


Assuntos
Bilirrubina , Vasos Coronários , Stents Farmacológicos , Oclusão de Enxerto Vascular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Bilirrubina/química , Bilirrubina/farmacologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/metabolismo , Vasos Coronários/cirurgia , Oclusão de Enxerto Vascular/diagnóstico por imagem , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/prevenção & controle , Masculino , Distribuição Aleatória , Suínos , Tomografia de Coerência Óptica
5.
J Biomater Appl ; 31(10): 1337-1345, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28436251

RESUMO

The aim of this study was to evaluate the inhibitory effect of sirolimus coating on the occurrence of restenosis and thrombosis with heparinized stents. Heparin and dopamine were conjugated by chemical bonding and anchored on the stent surface by a mussel-inspired adhesion mechanism. Subsequently, sirolimus was coated with poly lactic-glycolic acid on the heparinized stent surface. The heparin was well attached to the surface, and the surface was smooth after sirolimus coating. The smoothness of the surface was maintained after expansion of the stent. The amount of sirolimus released from the stent was 67.3% ± 4.55% within 7 days, followed by continual release up to day 28. The proliferation of smooth muscle cells was successfully arrested (51.3% ± 2.25% at 7 days of culture) by sirolimus released from the stent. Platelet adhesion was clearly prevented in the heparin-coated group (78.0 ± 8.00/1.8 cm2) compared to that in the heparin noncoated group (5.0 ± 1.00/1.8 cm2). Animal studies showed that the heparin and sirolimus-coated stent group had no obvious inflammatory response and no change in the fibrin score compared to those in the other groups. However, restenosis clearly decreased in the heparin and sirolimus-coated group (12.3% ± 3.54%) compared to the bare-metal stent group (27.5% ± 8.52%) and the heparin-coated group (25.3% ± 11.79%). These results suggest that heparinized surface-based sirolimus coating may be a useful approach for the prevention of restenosis and stent thrombosis.


Assuntos
Reestenose Coronária/prevenção & controle , Stents Farmacológicos , Heparina/química , Sirolimo/química , Trombose/prevenção & controle , Animais , Adesão Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Materiais Revestidos Biocompatíveis , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Artéria Ilíaca/cirurgia , Cinética , Adesividade Plaquetária , Coelhos , Ratos , Sirolimo/metabolismo , Sirolimo/farmacologia , Propriedades de Superfície
6.
J Biomed Mater Res A ; 105(1): 301-310, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27615559

RESUMO

The aim of this study was to compare dextran and Poly(l-lactide) (PLLA) polymer stent coatings as mediators for sirolimus (SRL) drug elution in a porcine coronary model. The bare metal stent (BMS) surface was first coated with a layer of SRL and then either dextran (DSS, a natural polymer) or PLA (PSS, a synthetic polymer). The release velocity of SRL was slightly faster in DSS than PSS over the first 7 days (78.5% and 62.3%, respectively, n = 10, p < 0.05) and continued to 28 days in both groups. The contact angle was dramatically decreased in DSS (38.7° ± 1.24) compared to BMS and PSS groups (72.7° ± 5.32 and 81.1º ± 1.70, respectively, n = 10, p < 0.05). Smooth muscle cell migration was arrested in both the DSS and PSS-treated groups compared to that in the nontreated group (4.2% ± 0.31, 5.8% ± 0.60, 80.0% ± 4.4, respectively, n = 10, p < 0.05). In the animal study, there were no significant differences in the injury score, the internal elastic lamina, and the lumen area among the groups. However, percent area stenosis was significantly decreased in the SRL-containing group (27.5% ± 2.52 in DSS and 27.9% ± 3.30 in PSS) compared to BMS (35.9% ± 3.51, p < 0.05). The fibrin score was higher in the PSS (2.9 ± 0.31) than BMS (2.1 ± 0.12) and DSS (2.5 ± 0.66). The inflammation score in the DSS (0.7 ± 0.21) was similar to that in the BMS (0.7 ± 0.12), which was dramatically lower than that PSS (1.5 ± 0.18, p < 0.005). Immunofluorescence analysis revealed that endothelialization was increased and inflammation prevented in the DSS. These results suggest that dextran may be useful for the fabrication of drug eluting stent as an alternative existing synthetic polymer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 301-310, 2017.


Assuntos
Dextranos/química , Stents Farmacológicos , Modelos Cardiovasculares , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Poliésteres/química , Sirolimo , Animais , Células Cultivadas , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Sirolimo/química , Sirolimo/farmacologia , Suínos
7.
J Mater Sci Mater Med ; 27(4): 66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26886814

RESUMO

The aim of this study was to evaluate antiproliferative sirolimus- and antioxidative alpha-lipoic acid (ALA)-eluting stents using biodegradable polymer [poly-L-lactic acid (PLA)] in a porcine coronary overstretch restenosis model. Forty coronary arteries of 20 pigs were randomized into four groups in which the coronary arteries had a bare metal stent (BMS, n = 10), ALA-eluting stent with PLA (AES, n = 10), sirolimus-eluting stent with PLA (SES, n = 10), or sirolimus- and ALA-eluting stent with PLA (SAS, n = 10). A histopathological analysis was performed 28 days after the stenting. The ALA and sirolimus released slowly over 30 days. There were no significant differences between groups in the injury or inflammation score; however, there were significant differences in the percent area of stenosis (56.2 ± 11.78% in BMS vs. 51.5 ± 12.20% in AES vs. 34.7 ± 7.23% in SES vs. 28.7 ± 7.30% in SAS, P < 0.0001) and fibrin score [1.0 (range 1.0-1.0) in BMS vs. 1.0 (range 1.0-1.0) in AES vs. 2.0 (range 2.0-2.0) in SES vs. 2.0 (range 2.0-2.0) in SAS, P < 0.0001] between the four groups. The percent area of stenosis based on micro-computed tomography corresponded with the restenosis rates based on histopathological stenosis in different proportions in the four groups (54.8 ± 7.88% in BMS vs. 50.4 ± 14.87% in AES vs. 34.5 ± 7.22% in SES vs. 28.9 ± 7.22% in SAS, P < 0.05). SAS showed a better neointimal inhibitory effect than BMS, AES, and SES at 1 month after stenting in a porcine coronary restenosis model. Therefore, SAS with PLA can be a useful drug combination for coronary stent coating to suppress neointimal hyperplasia.


Assuntos
Reestenose Coronária/terapia , Stents Farmacológicos , Sirolimo/farmacologia , Ácido Tióctico/farmacologia , Animais , Fibroblastos , Ratos , Sirolimo/química , Suínos , Ácido Tióctico/química , Resultado do Tratamento
8.
J Biomater Appl ; 31(1): 36-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26873634

RESUMO

Glucocorticoids are powerful anti-inflammatory, immunosuppressive, and anti-proliferative agents. The aim of this study was to evaluate the effectiveness of a prednisolone- (PDScs) and sirolimus-coated stent (SRLcs) in preventing artery vessel neointimal hyperplasia and inflammatory reactions in vitro and in vivo. PDS, a synthetic glucocorticoid, is a derivative of cortisol, which is used to treat a variety of inflammatory and autoimmune conditions. The stents were fabricated with PDS, SRL, or both agents using a layer-by-layer coating system (designated as PDScs, SRLcs, and PDSRLcs, respectively). The surface morphology of the PDScs showed an evenly dispersed and roughened shape, which was smoothened by the SRL coating. Half of the total drug amounts were released within seven days, followed by an additional release, which continued for up to 28 days. The proliferation of smooth muscle cells was inhibited in the SRLcs group (31.5 ± 4.08%), and this effect was enhanced by PDS addition (PDSRLcs, 46.8 ± 8.11%). Consistently, in the animal study, the restenosis rate was inhibited by the SRLcs and PDSRLcs (18.5 ± 6.23% and 14.5 ± 3.55%, respectively). Especially, fibrin expression and inflammation were suppressed in the PDS-containing group (PDScs, 0.6 ± 0.12 and 1.4 ± 0.33; PDSRLcs, 0.7 ± 0.48 and 1.7 ± 0.12, respectively) compared to PDS non-containing groups (BMS, 1.1 ± 0.12, and 1.8 ± 0.55; SRLcs, 1.6 ± 0.32 and 2.0 ± 0.62, respectively). Moreover, re-endothelialization was enhanced in the PDScs group as determined using immunohistochemistry with a cluster of differentiation (CD)-31 antibodies. These results suggest that the inhibitory effect of SRLcs on anti-restenosis can be accelerated by additional coating with PDS, which has promising properties as a bioactive compound with useful anti-inflammatory effects.


Assuntos
Prótese Vascular , Implantes de Medicamento/administração & dosagem , Stents Farmacológicos , Oclusão de Enxerto Vascular/tratamento farmacológico , Oclusão de Enxerto Vascular/prevenção & controle , Prednisolona/administração & dosagem , Sirolimo/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Difusão , Combinação de Medicamentos , Análise de Falha de Equipamento , Imunossupressores/administração & dosagem , Masculino , Prednisolona/química , Desenho de Prótese , Coelhos , Resultado do Tratamento
9.
J Mater Sci Mater Med ; 26(10): 251, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26438653

RESUMO

The drug-eluting stent still has limitations such as thrombosis and inflammation. These limitations often occur in the absence of endothelialization. This study investigated the effects of WKYMVm- and sirolimus-coated stents on re-endothelialization and anti-restenosis. The WKYMVm peptide, specially synthesized for homing endothelial colony-forming cells, was coated onto a bare-metal stent with hyaluronic acid through a simple dip-coating method (designated HA-Pep). Thereafter, sirolimus was consecutively coated to onto the HA-Pep (designated Pep/SRL). The cellular response to stents by human umbilical-vein endothelial cells and vascular smooth-muscle cells was examined by XTT assay. Stents were implanted into rabbit iliac arteries, isolated 6 weeks post-implantation, and then subjected to histological analysis. The peptide was well attached to the surface of the stents and the sirolimus coating made the surface smooth. The release pattern for sirolimus was similar to that of commercial sirolimus-coated stents (57.2% within 7 days, with further release for up to 28 days). Endothelial-cell proliferation was enhanced in the HA-Pep group after 7 days of culture (38.2 ± 7.62%, compared with controls). On the other hand, the proliferation of smooth-muscle cells was inhibited in the Pep/SRL group after 7 days of culture (40.7 ± 6.71%, compared with controls). In an animal study, the restenosis rates for the Pep/SRL group (13.5 ± 4.50%) and commercial drug-eluting stents (Xience Prime™; 9.2 ± 7.20%) were lower than those for bare-metal stents (25.2 ± 4.52%) and HA-Pep stents (26.9 ± 3.88%). CD31 staining was incomplete for the bare-metal and Xience Prime™ groups. On the other hand, CD31 staining showed a consecutive linear pattern in the HA-Pep and Pep/SRL groups, suggesting that WKYMVm promotes endothelialization. These results indicate that the WKYMVm coating could promote endothelial healing, and consecutive coatings of WKYMVm and sirolimus onto bare-metal stents have a potential role in re-endothelialization and neointimal suppression.


Assuntos
Reestenose Coronária/prevenção & controle , Stents Farmacológicos , Oligopeptídeos/administração & dosagem , Sirolimo/administração & dosagem , Animais , Materiais Biocompatíveis/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Reestenose Coronária/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Artéria Ilíaca/efeitos dos fármacos , Artéria Ilíaca/patologia , Artéria Ilíaca/cirurgia , Masculino , Teste de Materiais , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neointima/patologia , Neointima/prevenção & controle , Coelhos , Ratos
10.
J Mater Sci Mater Med ; 26(4): 172, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25804307

RESUMO

Chronic total occlusions (CTOs) are common in patients with peripheral arterial disease (PAD). This study aimed to examine the feasibility and reliability of a CTO induced by a thin biodegradable polymer (polyglycolic acid) coated copper stent in a porcine femoral artery. Novel thin biodegradable polymer coated copper stents (9 mm long) were crimped on an angioplasty balloon (4.5 mm diameter × 12 mm length) and inserted into the femoral artery. Histopathologic analysis was performed 35 days after stenting. In five of six stented femoral arteries, severe in-stent restenosis and total occlusion with collateral circulation were observed without adverse effects such as acute stent thrombosis, leg necrosis, or death at 5 weeks. Fibrous tissue deposition, small vascular channels, calcification, and inflammatory cells were observed in hematoxylin-eosin, Carstair's, and von Kossa tissue stains; these characteristics were similar to pathological findings associated with CTOs in humans. The neointima volume measured by micro-computed tomography was 93.9 ± 4.04 % in the stented femoral arteries. CTOs were reliably induced by novel thin biodegradable polymer coated copper stents in porcine femoral arteries. Successful induction of CTOs may provide a practical understanding of their formation and application of an interventional device for CTO treatment.


Assuntos
Implantes Absorvíveis , Cobre/química , Modelos Animais de Doenças , Oclusão de Enxerto Vascular/patologia , Ácido Poliglicólico/química , Stents , Animais , Prótese Vascular , Materiais Revestidos Biocompatíveis/química , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Oclusão de Enxerto Vascular/fisiopatologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...