Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111861

RESUMO

The investigation of quantitative phenotypic traits resulting from the interaction between targeted genotypic traits and environmental factors is essential for breeding selection. Therefore, plot-wise controlled environmental factors must be invariable for accurate identification of phenotypes. However, the assumption of homogeneous variables within the open-field is not always accepted, and requires a spatial dependence analysis to determine whether site-specific environmental factors exist. In this study, spatial dependence within the kenaf breeding field was assessed in a geo-tagged height map derived from an unmanned aerial vehicle (UAV). Local indicators of spatial autocorrelation (LISA) were applied to the height map using Geoda software, and the LISA map was generated in order to recognize the existence of kenaf height status clusters. The spatial dependence of the breeding field used in this study appeared in a specific region. The cluster pattern was similar to the terrain elevation pattern of this field and highly correlated with drainage capacity. The cluster pattern could be utilized to design random blocks based on regions that have similar spatial dependence. We confirmed the potential of spatial dependence analysis on a crop growth status map, derived by UAV, for breeding strategy design with a tight budget.

2.
PLoS One ; 16(10): e0258567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34618874

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0256978.].

3.
PLoS One ; 16(9): e0256978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492059

RESUMO

Kenaf (Hibiscus cannabinus L.) is an industrial crop used as a raw material in various fields and is cultivated worldwide. Compared to high potential for its utilization, breeding sector is not vigorous partially due to laborous breeding procedure. Thus, efficient breeding methods are required for varieties that can adapt to various environments and obtain optimal production. For that, identifying kenaf's characteristics is very important during the breeding process. Here, we investigated if RGB based vegetative index (VI) could be associated with traits for biomass. We used 20 varieties and germplasm of kenaf and RGB images taken with unmanned aerial vehicles (UAVs) for field selection in early and late growth stage. In addition, measuring the stem diameter and the number of nodes confirmed whether the vegetative index value obtained from the RGB image could infer the actual plant biomass. Based on the results, it was confirmed that the individual surface area and estimated plant height, which were identified from the RGB image, had positive correlations with the stem diameter and node number, which are actual growth indicators of the rate of growth further, biomass could also be estimated based on this. Moreover, it is suggested that VIs have a high correlation with actual growth indicators; thus, the biomass of kenaf could be predicted. Interstingly, those traits showing high correlation in the late stage had very low correlations in the early stage. To sum up, the results in the current study suggest a more efficient breeding method by reducing labor and resources required for breeding selection by the use of RGB image analysis obtained by UAV. This means that considerable high-quality research could be performed even with a tight budget. Furthermore, this method could be applied to crop management, which is done with other vegetative indices using a multispectral camera.


Assuntos
Produtos Agrícolas/anatomia & histologia , Hibiscus/anatomia & histologia , Melhoramento Vegetal , Biomassa , Fenótipo , Banco de Sementes/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...