Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Anim Resour ; 44(2): 255-268, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38764505

RESUMO

Probiotic products have long been recognized for their health benefits. Additionally, milk has held a longstanding reputation as a dairy product that offers high-quality proteins and essential micronutrients. As awareness of the impact of food on health grows, interest in functional products such as probiotic dairy products is on the rise. Fermentation, a time-honored technique used to enhance nutritional value and food preservation, has been used for centuries to increase nutritional value and is one of the oldest food processing methods. Historically, fermented dairy products have been used as convenient vehicle for the consumption of probiotics. However, addressing the potential drawbacks of fermentation has recently led to increase in research on probiotic dairy drinks prepared without fermentation. These non-fermented dairy drinks have the advantage of maintaining the original flavors of milk drinks, containing potential health functional probiotics, and being an alternative dairy product that is helpful for probiotics intake. Currently, research on plant-based dairy products is rapidly increasing in the market. These developments might suggest the potential for novel forms of non-fermented dairy beverages with substantial prospects in the food market. This review aims to provide an overview of milk-based dairy beverages, both fermented and non-fermented, and discuss the potential of non-fermented dairy products. This exploration paves the way for innovative approaches to deliver probiotics and nutrition to consumers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38758481

RESUMO

This study investigated the anti-inflammatory effects of Pediococcus acidilactici strains isolated from fermented vegetables on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. In addition, the probiotic characteristics and safety were evaluated. Our results show that Ped. acidilactici strains possess high survivability in simulated gastrointestinal environments and strong attachment to HT-29 cells. All Ped. acidilactici strains exhibited γ-hemolysis and resistance to gentamicin, kanamycin, and streptomycin, a characteristic commonly observed in lactic acid bacteria. Treatment with Ped. acidilactici inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2, leading to a subsequent reduction in nitric oxide and prostaglandin E2 production. Furthermore, the strains downregulated interleukin (IL)-1ß and IL-6 mRNA levels, ultimately suppressing their production. We demonstrated that Ped. acidilactici strains could modulate the activation of nuclear factor-κB, mitogen-activated protein kinase, and activator protein-1, which are known to regulate inflammatory responses. Consequently, the anti-inflammatory properties of Ped. acidilactici strains in this study support their potential application as therapeutic agents for inflammatory diseases, providing molecular insights into next-generation functional probiotic products.

3.
ChemistryOpen ; : e202300246, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377228

RESUMO

The application of ultraviolet (UV) light for the decontamination of chemical warfare agents (CWAs) has gained recognition as an effective method, especially for treating hard-to-reach areas where wet chemical methods are impractical. In this study, TiO2 /Ti was employed as a model catalyst, which was contaminated with 2-chloroethyl phenyl sulfide (CEPS), and subjected to photocatalytic decontamination using both UVB and UVC light. Additionally, photocatalytic decontamination efficiency by introducing Au, Pt, and Cu onto the TiO2 /Ti surface was explored. During the photodecomposition process under UVC light, at least eight distinct secondary byproducts were identified. It was observed that the introduction of overlayer metals did not significantly enhance the photodecomposition under UVC light instead overlaid Au exhibited substantially improved activity under UVB light. Whereas, photodecomposition process under UVB light, only five secondary products were detected, including novel compounds with sulfoxide and sulfone functional groups. This novel study offers valuable insights into the generation of secondary products and sheds light on the roles of overlayer metals and photon wavelength in the photodecontamination process of CWA.

4.
J Microbiol Biotechnol ; 34(3): 487-494, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247208

RESUMO

Recently, the term metabiotics has emerged as a new concept of probiotics. This concept entails combining existing probiotic components with metabolic by-products improve specific physiological functionalities. Representative ingredients of these metabiotics include short-chain fatty acids (SCFAs), bacteriocins, polysaccharides, and peptides. The new concept is highly regarded as it complements the side effects of existing probiotics and is safe and easy to administer. Known health functions of metabiotics are mainly immune regulation, anti-inflammatory, anticancer, and brain-neurological health. Research has been actively conducted on the health benefits related to the composition of intestinal microorganisms. Among them, the focus has been on brain neurological health, which requires extensive research. This study showed that neurological disorders, such as depression, anxiety, autism spectrum disorder, Alzheimer's disease, and Parkinson's disease, can be treated and prevented according to the gut-brain axis theory by changing the intestinal microflora. In addition, various studies are being conducted on the immunomodulatory and anticancer effects of substances related to metabiotics of the microbiome. In particular, its efficacy is expected to be confirmed through human studies on various cancers. Therefore, developing various health functional effects of the next-generation probiotics such as metabiotics to prevent or treatment of various diseases is anticipated.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Probióticos , Humanos , Transtorno do Espectro Autista/metabolismo , Probióticos/uso terapêutico , Encéfalo/metabolismo , Ácidos Graxos Voláteis/metabolismo
5.
J Microbiol Biotechnol ; 34(1): 116-122, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37674399

RESUMO

Dental caries has known as an infectious disease that is considered a serious global public health problem. Recently, report indicate that probiotics play a vital role in maintaining oral health. Therefore, this study aimed to evaluate the prevention effects of Lactobacillus plantarum Ln4 against dental infection by the pathogenic bacterium Streptococcus mutans KCTC 5124 through biofilm formation inhibition. To evaluate such prevention effects against S. mutans KCTC 5124, antimicrobial activity, auto-aggregation, co-aggregation, cell surface hydrophobicity, total exopolysaccharide (EPS) production rate, and biofilm formation were analyzed. Results showed that L. plantarum Ln4 showed higher antimicrobial activity than L. rhamnosus GG (LGG). In the group treated with L. plantarum Ln4, the co-aggregation (58.85%), cell surface hydrophobicity (16.75%), and EPS production rate (73.29%) values were lower than those of LGG and the negative control. Additionally, crystal violet staining and confocal laser scanning microscopy (CLSM) revealed that L. plantarum Ln4 effectively inhibited biofilm formation in S. mutans KCTC 5124. Therefore, L. plantarum Ln4 could be used in the industry as a probiotics to prevent and improve oral health.


Assuntos
Anti-Infecciosos , Cárie Dentária , Lactobacillus plantarum , Probióticos , Humanos , Streptococcus mutans , Lactobacillus plantarum/metabolismo , Cárie Dentária/prevenção & controle , Biofilmes , Anti-Infecciosos/farmacologia , Probióticos/farmacologia
6.
Brain ; 146(9): 3608-3615, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143322

RESUMO

The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFß4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFß4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFß4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFß4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/metabolismo , Células de Schwann , Fenótipo , Fator de Crescimento Transformador beta/metabolismo
7.
FEBS Lett ; 596(22): 2898-2913, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054654

RESUMO

Precise control of the two major proteolysis systems [i.e. ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP)] is important for proper cell function. Here, we explored whether UPS and ALP affect each other in two neurotoxin-based cell death models of Parkinson's disease. Monitoring UPS and ALP activity using their specific reporter plasmids revealed that treatment with the neurotoxin MPP+ or the neurotoxin 6-OHDA decreased proteasome activity in dopaminergic MN9D cells. Interestingly, ALP inhibition relieved or potentiated the decrease in proteasome activity induced by the two toxins. Moreover, suppression of proteasome activity promoted 6-OHDA-induced excessive autophagic flux, potentiating ALP dysregulation. In contrast, MPP+ -induced impairment of ALP was alleviated by proteasome inhibition. These findings suggest a dynamic interplay between UPS and ALP operating in MN9D cells under two distinct toxin-mediated cell death pathways.


Assuntos
Doença de Parkinson , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Neurotoxinas/toxicidade , Doença de Parkinson/metabolismo , Oxidopamina/farmacologia , Autofagia/fisiologia , Morte Celular , Dopamina
8.
Nanomaterials (Basel) ; 12(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014623

RESUMO

V-Zn hybrids have widely been used as catalyst materials in the environment and as energy. Herein, V-Zn hybrid electrodes were prepared by the hydrothermal and sputter-deposition methods using a Zn foil support. Their electrocatalytic CO2 reduction (EC CO2 RR) performances were tested under various applied potentials, different electrolytes, and concentrations before and after thermal treatment of the demonstrated electrode. Gas and liquid products were confirmed by gas chromatography and nuclear magnetic resonance spectroscopy, respectively. For V-Zn electrode by hydrothermal method produced mainly syngas (CO and H2) with tunable ratio by varying applied potential. Minor products include CH4, C2H4, and C2H6. A liquid product of formate showed a Faradaic efficiency (FE) of 2%. EC CO2 RR efficiency for CO, CH4, and formate was best in 0.2 M KHCO3 electrolyte condition. CO and formate were further increased by photoirradiation and Nafion-treated electrode. Formate and CH4 productions were significantly increased by thermal treatment of the V-Zn electrode. CO production was diminished for the V-Zn electrode by sputter deposition but was recovered by thermal treatment. Photocatalytic CO2 RR was tested to find that RR products include CH3OH, CO, CH4, C2H4, and C2H6. Interestingly long-chain hydrocarbons (CnH2n and CnH2n+2, where n = 3-6) were first observed under mild conditions. The long-chain formation was understood by Fisher-Tropsch (F-T) synthesis. Alkenes were observed to be more produced than alkanes unlike in the conventional F-T synthesis. The present new findings provide useful clues for the development of hybrid electro-and photo-catalysts tested under various experimental conditions in energy and environment.

9.
Food Sci Biotechnol ; 31(6): 731-737, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35646416

RESUMO

The objective of this study was to develop a non-fermented probiotic milk that maintains its physicochemical properties, microbial properties, antioxidant activity, and sensory properties during storage (0, 7, and 14 days). During storage, pH and viable cell counts decreased; however, titratable acidity increased. In addition, the composition and sensory characteristics of the non-fermented probiotic milk showed no significant differences between samples (MLN; milk with Lactobacillus plantarum Ln1, MGG; milk with Lactobacillus rhamnosus GG, and milk control). The antioxidant activities of MLN determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ABTS+ radical scavenging, and reducing power assay were higher during the examined storage periods when compared with those of the other samples. Overall, the physicochemical properties, microbial properties, and sensory factors of MLN showed no significant differences. However, high antioxidant activity was observed. Thus, we present a new functional dairy product with antioxidant activity.

10.
Biomedicines ; 10(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453613

RESUMO

Paclitaxel is a widely used anticancer drug that induces dose-limiting peripheral neuropathy. Mitochondrial dysfunction has been implicated in paclitaxel-induced neuronal damage and in the onset of peripheral neuropathy. We have previously shown that the expression of PINK1, a key mediator of mitochondrial quality control, ameliorated the paclitaxel-induced thermal hyperalgesia phenotype and restored mitochondrial homeostasis in Drosophila larvae. In this study, we show that the small-molecule PINK1 activator niclosamide exhibits therapeutic potential for paclitaxel-induced peripheral neuropathy. Specifically, niclosamide cotreatment significantly ameliorated the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae in a PINK1-dependent manner. Paclitaxel-induced alteration of the dendrite structure of class IV dendritic arborization (C4da) neurons was not reduced upon niclosamide treatment. In contrast, paclitaxel treatment-induced increases in both mitochondrial ROS and aberrant mitophagy levels in C4da neurons were significantly suppressed by niclosamide. In addition, niclosamide suppressed paclitaxel-induced mitochondrial dysfunction in human SH-SY5Y cells in a PINK1-dependent manner. These results suggest that niclosamide alleviates thermal hyperalgesia by attenuating paclitaxel-induced mitochondrial dysfunction. Taken together, our results suggest that niclosamide is a potential candidate for the treatment of paclitaxel-induced peripheral neuropathy with low toxicity in neurons and that targeting mitochondrial dysfunction is a promising strategy for the treatment of chemotherapy-induced peripheral neuropathy.

11.
Front Chem ; 10: 814766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223770

RESUMO

Recycled valuable energy production by the electrochemical CO2 reduction method has explosively researched using countless amounts of developed electrocatalysts. Herein, we have developed hybrid sandwiched Ga2O3:ZnO/indium/ZnO nanorods (GZO/In/ZnONR) and tested their photoelectrocatalytic CO2 reduction performances. Gas chromatography and nuclear magnetic spectroscopy were employed to examine gas and liquid CO2 reduction products, respectively. Major products were observed to be CO, H2, and formate whose Faradaic efficiencies were highly dependent on the relative amounts of overlayer GZO and In spacer, as well as applied potential and light irradiation. Overall, the present study provides a new strategy of controlling CO2 reduction products by developing a sandwiched hybrid catalyst system for energy and environment.

12.
J Microbiol Biotechnol ; 32(1): 56-63, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34675145

RESUMO

This study aims to determine the antibiofilm effect of cell-free supernatant (CFS) of Lactobacillus brevis strains against Streptococcus mutans strains. To study the antibiofilm mechanism against S. mutans strains, antibacterial effects, cell surface properties (auto-aggregation and cell surface hydrophobicity), exopolysaccharide (EPS) production, and morphological changes were examined. The antibiofilm effect of L. brevis KCCM 202399 CFS as morphological changes were evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), compared with the control treatment. Among the L. brevis strains, L. brevis KCCM 202399 showed the highest antibiofilm effect on S. mutans KCTC 5458. The antibacterial effect of L. brevis KCCM 202399 against S. mutans KCTC 5458 was investigated using the deferred method (16.00 mm). The minimum inhibitory concentration of L. brevis KCCM 202399 against S. mutans KCTC 5458 was 25.00%. Compared with the control treatment, L. brevis KCCM 202399 CFS inhibited the bacterial adhesion of S. mutans KCTC 5458 by decreasing auto-aggregation, cell surface hydrophobicity, and EPS production (45.91%, 40.51%, and 67.44%, respectively). L. brevis KCCM 202399 CFS inhibited and eradicated the S. mutans KCTC 5458 biofilm. Therefore, these results suggest that L. brevis KCCM 202399 CFS may be used to develop oral health in the probiotic industry.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Alimentos Fermentados/microbiologia , Levilactobacillus brevis/isolamento & purificação , Streptococcus mutans/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Cárie Dentária , Testes de Sensibilidade Microbiana , Probióticos/farmacologia , República da Coreia
13.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34443738

RESUMO

ZIF-derivatized catalysts have shown high potential in catalysis. Herein, bean sprout-like Co-TiO2/Ti nanostructures were first synthesized by thermal treatment at 800 °C under Ar-flow conditions using sacrificial ZIF-67 templated on Ti sheets. It was observed that ZIF-67 on Ti sheets started to thermally decompose at around 350 °C and was converted to the cubic phase Co3O4. The head of the bean sprout structure was observed to be Co3O4, while the stem showed a crystal structure of rutile TiO2 grown from the metallic Ti support. Cu sputter-deposited Co-TiO2/Ti nanostructures were also prepared for photocatalytic and electrocatalytic CO2 reduction performances, as well as electrochemical oxygen reaction (OER). Gas chromatography results after photocatalytic CO2 reduction showed that CH3OH, CO and CH4 were produced as major products with the highest MeOH selectivity of 64% and minor C2 compounds of C2H2, C2H4 and C2H6. For electrocatalytic CO2 reduction, CO, CH4 and C2H4 were meaningfully detected, but H2 was dominantly produced. The amounts were observed to be dependent on the Cu deposition amount. Electrochemical OER performances in 0.1 M KOH electrolyte exhibited onset overpotentials of 330-430 mV (vs. RHE) and Tafel slopes of 117-134 mV/dec that were dependent on Cu-loading thickness. The present unique results provide useful information for synthesis of bean sprout-like Co-TiO2/Ti hybrid nanostructures and their applications to CO2 reduction and electrochemical water splitting in energy and environmental fields.

14.
Microb Pathog ; 157: 104938, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022360

RESUMO

This study determined the inhibitory effect of Lactobacillus brevis KU15153 against cariogenic Streptococcus mutans KCTC 5316. Antimicrobial activity, auto-aggregation, cell surface hydrophobicity, exopolysaccharides (EPS) production, biofilm formation, and morphological changes were assessed in the presence of L. brevis KU15153. L. brevis KU15153 exhibited the highest antimicrobial activity against S. mutans KCTC 5316 (28.67 ± 4.16 mm). Auto-aggregation (38.32%), cell surface hydrophobicity (27.08%), and EPS production rate (58.52%) of S. mutans KCTC 5316 slightly decreased upon treatment with L. brevis KU15153. Additionally, crystal violet stanning and scanning electron microscopy confirmed the L. brevis KU15153-mediated inhibition of biofilm formation by S. mutans KCTC 5316 in comparison to that observed in the negative control (untreated S. mutans KCTC 5316). These results indicate that the L. brevis KU15153 could be used as a potential probiotic for maintaining oral health.


Assuntos
Cárie Dentária , Levilactobacillus brevis , Probióticos , Biofilmes , Humanos , Streptococcus mutans
15.
J Microbiol Biotechnol ; 30(6): 926-929, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32238764

RESUMO

This study aimed to determine the immune-stimulating effects of heat-killed Lactobacillus plantarum Ln1 (HK-Ln1) through the production of nitric oxide (NO) and pro-inflammatory cytokine achieved by inducing NF-κB and mitogen-activated protein kinase (MAPK)-signaling pathways in macrophages. HK-Ln1 showed higher NO and cytokine production compared t°Control (nonstimulated lipopolysaccharide); in addition, the expression of inducible nitric oxide synthase (iNOS) was induced through HK-Ln1treatment. The phosphorylation of IκB-α and p65 increased following treatment by HK-Ln1, which implicates IκB-α degradation and the translocation of p65 to nucleus. In addition, the phosphorylation of MAPKs, ERK 1/2, JNK, and p38 was induced following HK-Ln1 treatment.


Assuntos
Alimentos Fermentados/microbiologia , Lactobacillus plantarum/imunologia , Probióticos/farmacologia , Animais , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosforilação/imunologia , Células RAW 264.7 , República da Coreia
16.
Food Sci Biotechnol ; 28(5): 1521-1528, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695951

RESUMO

Lactobacillus brevis KU15153 was isolated from kimchi and probiotic characterization was performed including analysis of its antimicrobial and antioxidant effects. Lactobacillus rhamnosus GG (LGG) was used as a probiotic control. L. brevis KU15153 survived under artificial gastric conditions and was non-hemolytic, showed antibiotic susceptibility, and did not produce carcinogenic ß-glucuronidase. L. brevis KU15153 adhered strongly to HT-29 cells in the direct adherent assay and showed high cell surface hydrophobicity. Particularly, L. brevis KU15153 showed antimicrobial activity against the food-borne pathogens Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 15313, Salmonella Typhimurium P99, and Staphylococcus aureus KCCM 11335. Antioxidant activity was assessed using the DPPH radical scavenging assay and ß-carotene and linoleic acid inhibition assay. L. brevis KU15153 showed higher antioxidant activity than LGG. These results suggest that L. brevis KU15153 has potential for use as a probiotic organism.

17.
J Microbiol Biotechnol ; 29(12): 1894-1903, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31581386

RESUMO

The purpose of this study was to determine the probiotic properties of Lactobacillus brevis KCCM 12203P isolated from the Korean traditional food kimchi and to evaluate the antioxidative activity and immune-stimulating potential of its heat-killed cells to improve their bio-functional activities. Lactobacillus rhamnosus GG, which is a representative commercial probiotic, was used as a comparative sample. Regarding probiotic properties, L. brevis KCCM 12203P was resistant to 0.3% pepsin with a pH of 2.5 for 3 h and 0.3% oxgall solution for 24 h, having approximately a 99% survival rate. It also showed strong adhesion activity (6.84%) onto HT-29 cells and did not produce ß-glucuronidase but produced high quantities of leucine arylamidase, valine arylamidase, ß-galactosidase, and N-acetyl-ß- glucosaminidase. For antioxidant activity, it appeared that viable cells had higher radical scavenging activity in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay, while in the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, heat-killed cells had higher antioxidant activity. Additionally, L. brevis KCCM 12203P showed higher lipid oxidation inhibition ability than L. rhamnosus GG; however, there was no significant difference (p < 0.05) between heat-killed cells and control cells. Furthermore, heat-killed L. brevis KCCM 12203P activated RAW 264.7 macrophage cells without cytotoxicity at a concentration lower than 108 CFU/ml and promoted higher gene expression levels of inducible nitric oxide synthase, interleukin-1ß, and interleukin-6 than L. rhamnosus GG. These results suggest that novel L. brevis KCCM 12203P could be used as a probiotic or applied to functional food processing and pharmaceutical fields for immunocompromised people.


Assuntos
Antioxidantes/metabolismo , Alimentos Fermentados/microbiologia , Imunização , Levilactobacillus brevis/isolamento & purificação , Levilactobacillus brevis/fisiologia , Probióticos/farmacologia , Animais , Aderência Bacteriana , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Manipulação de Alimentos , Sequestradores de Radicais Livres , Expressão Gênica , Células HT29 , Temperatura Alta , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Levilactobacillus brevis/classificação , Levilactobacillus brevis/genética , Camundongos , Óxido Nítrico Sintase/metabolismo , Filogenia , Células RAW 264.7
18.
J Ginseng Res ; 43(1): 20-26, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30662290

RESUMO

BACKGROUND: Ginsenosides, which are bioactive components in ginseng, can be converted to smaller compounds for improvement of their pharmacological activities. The conversion methods include heating; acid, alkali, and enzymatic treatment; and microbial conversion. The aim of this study was to determine the bioconversion of ginsenosides in fermented red ginseng extract (FRGE). METHODS: Red ginseng extract (RGE) was fermented using Lactobacillus plantarum KCCM 11613P. This study investigated the ginsenosides and their antioxidant capacity in FRGE using diverse methods. RESULTS: Properties of RGE were changed upon fermentation. Fermentation reduced the pH value, but increased the titratable acidity and viable cell counts of lactic acid bacteria. L. plantarum KCCM 11613P converted ginsenosides Rb2 and Rb3 to ginsenoside Rd in RGE. Fermentation also enhanced the antioxidant effects of RGE. FRGE reduced 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power; however, it improved the inhibition of ß-carotene and linoleic acid oxidation and the lipid peroxidation. This suggested that the fermentation of RGE is effective for producing ginsenoside Rd as precursor of ginsenoside compound K and inhibition of lipid oxidation. CONCLUSION: This study showed that RGE fermented by L. plantarum KCCM 11613P may contribute to the development of functional food materials.

19.
J Food Sci Technol ; 55(8): 3174-3180, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065428

RESUMO

The aim of this study was to evaluate the probiotic properties of Lactobacillus plantarum Ln1 isolated from kimchi and the antioxidant activities of live and heat-killed cells. L. plantarum KCTC 3108, which has been used as a commercial probiotic strain, was used as a control. L. plantarum strains (Ln1 and KCTC 3108) can survive under artificial gastric conditions (pH 2.5 in 0.3% pepsin for 3 h and 0.3% oxgall for 24 h), and adhere strongly to HT-29 cells. In addition, L. plantarum Ln1 did not produce carcinogenic ß-glucuronidase, whereas it showed a higher ß-galactosidase production of 3067.42 mU/mL. The antioxidant activity of L. plantarum Ln1 was assessed using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, ß-carotene and linoleic acid inhibition, and reducing power assays. In all these methods, live L. plantarum Ln1 showed a higher antioxidant activity than the control strain. In heat-killed cells of L. plantarum Ln1, ß-carotene bleaching inhibitory activity and reducing power was higher than DPPH and ABTS radical scavenging activity. These results suggested that live or heat-killed L. plantarum Ln1 isolated from kimchi might be useful as an antioxidant probiotic.

20.
Korean J Food Sci Anim Resour ; 38(6): 1160-1167, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30675108

RESUMO

The objective of this study was to evaluate the composition, pH, titratable activity, microbial properties, and antioxidant effect of yogurt using ginseng extract powder (GEP), Lactobacillus plantarum NK181, and Streptococcus thermophilus as the starter culture. Different concentration of GEP (0%, 0.5%, 1%, 1.5%, and 2% (w/v)) were used in the yogurt. During yogurt fermentation, pH was decreased; however, titratable acidity and viable cell counts were increased. The addition of GEP to yogurt led to a decrease in moisture content and an increase in the fat, ash, and total solids content. The antioxidant effect using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ß-carotene bleaching, and ferric reducing antioxidant power (FRAP) assay gradually increased with added GEP. Overall, yogurt fermented with 1% GEP was acceptable in terms of cell viability and antioxidant effect. These results might provide information regarding development of ginseng dairy products with enhanced antioxidant activities and probiotic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...