Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535699

RESUMO

In this study, a self-powered broadband photodetector based on graphene/NiO/n-Si was fabricated by the direct spin-coating of nanostructured NiO on the Si substrate. The current-voltage measurement of the NiO/Si heterostructure exhibited rectifying characteristics with enhanced photocurrent under light illumination. Photodetection capability was measured in the range from 300 nm to 800 nm, and a higher photoresponse in the UV region was observed due to the wide bandgap of NiO. The presence of a top graphene transparent conducting electrode further enhanced the responsivity in the whole measured wavelength region from 350 to 800 nm. The photoresponse of the NiO/Si detector at 350 nm was found to increase from 0.0187 to 0.163 A/W at -1 V with the insertion of the graphene top layer. A high photo-to-dark current ratio (≃104) at the zero bias indicates that the device has advantageous application in energy-efficient high-performance broadband photodetectors.

2.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38063703

RESUMO

Li metal is a promising anode candidate due to its high theoretical capacity and low electrochemical potential. However, dendrite formation and the resulting dead Li cause continuous Li consumption, which hinders its practical application. In this study, we realized N-doped nanoporous carbon for a stable Li metal host composed only of lightweight elements C and N through the simple calcination of a nitrogen-containing metal-organic framework (MOF). During the calcination process, we effectively controlled the amount of lithophilic N and the electrical conductivity of the N-doped porous carbons to optimize their performance as Li metal hosts. As a result, the N-doped porous carbon exhibited excellent electrochemical performances, including 95.8% coulombic efficiency and 91% capacity retention after 150 cycles in a full cell with an LFP cathode. The N-doped nanoporous carbon developed in this study can realize a stable Li metal host without adding lithium ion metals and metal oxides, etc., which is expected to provide an efficient approach for reliable Li metal anodes in secondary battery applications.

3.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202473

RESUMO

The high capacity of electrodes allows for a lower mass of electrodes, which is essential for increasing the energy density of the batteries. According to this, silicon is a promising anode candidate for Li-ion batteries due to its high theoretical capacity. However, its practical application is hampered by the significant volume expansion of silicon during battery operation, resulting in pulverization and contact loss. In this study, we developed a stable Li-ion anode that not only solves the problem of the short lifetime of silicon but also preserves the initial efficiency by using silicon nanoparticles covered with glassy ZIF-4 (SZ-4). SZ-4 suppresses silicon pulverization, contact loss, etc. because the glassy ZIF-4 wrapped around the silicon nanoparticles prevents additional SEI formation outside the silicon surface due to the electrically insulating characteristics of glassy ZIF-4. The SZ-4 realized by a simple heat treatment method showed 74% capacity retention after 100 cycles and a high initial efficiency of 78.7%.

4.
Sensors (Basel) ; 21(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34770570

RESUMO

We report a novel graphene transfer technique for fabricating graphene field-effect transistors (FETs) that avoids detrimental organic contamination on a graphene surface. Instead of using an organic supporting film like poly(methyl methacrylate) (PMMA) for graphene transfer, Au film is directly deposited on the as-grown graphene substrate. Graphene FETs fabricated using the established organic film transfer method are easily contaminated by organic residues, while Au film protects graphene channels from these contaminants. In addition, this method can also simplify the device fabrication process, as the Au film acts as an electrode. We successfully fabricated graphene FETs with a clean surface and improved electrical properties using this Au-assisted transfer method.

5.
Nano Lett ; 21(23): 9909-9915, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34843258

RESUMO

While the orientation-dependent properties of semiconductor nanowires have been theoretically predicted, their study has long been overlooked in many fields owing to the limits to controlling the crystallographic growth direction of nanowires (NWs). We present here the orientation-controlled growth of single-crystalline germanium (Ge) NWs using a self-catalytic low-pressure chemical vapor deposition process. By adjusting the growth temperature, the orientation of growth direction in GeNWs was selectively controlled to the ⟨110⟩, ⟨112⟩, or ⟨111⟩ directions on the same substrate. The NWs with different growth directions exhibit distinct morphological features, allowing control of the NW morphology from uniform NWs to nanoribbon structures. Significantly, the VLS-based self-catalytic growth of the ⟨111⟩ oriented GeNW suggests that NW growth is possible for single elementary materials even without an appropriate external catalyst. Furthermore, these findings could provide opportunities to investigate the orientation-dependent properties of semiconductor NWs.

6.
ACS Nano ; 14(3): 3141-3149, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32057226

RESUMO

Despite the enormous potential of the single-crystalline two-dimensional (2D) materials for a wide range of future innovations and applications, 2D single-crystals are still suffering in industrialization due to the lack of efficient large-area production methods. In this work, we introduce a general approach for the scalable growth of single-crystalline graphene, which is a representative 2D material, through "transplanting" uniaxially aligned graphene "seedlings" onto a larger-area catalytic growth substrate. By inducing homoepitaxial growth of graphene from the edges of the seeds arrays without additional nucleations, we obtained single-crystalline graphene with an area four times larger than the mother graphene seed substrate. Moreover, the defect-healing process eliminated the inherent defects of seeds, ensuring the reliability and crystallinity of the single-crystalline graphene for industrialization.

7.
Materials (Basel) ; 12(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766213

RESUMO

Twisted bi-layer graphene (tBLG) has attracted much attention because of its unique band structure and properties. The properties of tBLG vary with small differences in the interlayer twist angle, but it is difficult to accurately adjust the interlayer twist angle of tBLG with the conventional fabrication method. In this study, we introduce a facile tBLG fabrication method that directly picks up a single-crystalline graphene layer from a growth substrate and places it on another graphene layer with a pre-designed twist angle. Using this approach, we stacked single-crystalline graphene layers with controlled twist angles and thus fabricated tBLG and twisted multi-layer graphene (tMLG). The structural, optical and electrical properties depending on the twist angle and number of layers, were investigated using transmission electron microscopy (TEM), micro-Raman spectroscopy, and gate-dependent sheet resistance measurements. The obtained results show that the pick and place approach enables the direct dry transfer of the top graphene layer on the as-grown graphene to fabricate uniform tBLG and tMLG with minimal interlayer contamination and pre-defined twist angles.

8.
Nanomaterials (Basel) ; 9(11)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752358

RESUMO

The electrical and optical properties of semiconducting transition metal dichalcogenides (TMDs) can be tuned by controlling their composition and the number of layers they have. Among various TMDs, the monolayer WSe2 has a direct bandgap of 1.65 eV and exhibits p-type or bipolar behavior, depending on the type of contact metal. Despite these promising properties, a lack of efficient large-area production methods for high-quality, uniform WSe2 hinders its practical device applications. Various methods have been investigated for the synthesis of large-area monolayer WSe2, but the difficulty of precisely controlling solid-state TMD precursors (WO3, MoO3, Se, and S powders) is a major obstacle to the synthesis of uniform TMD layers. In this work, we outline our success in growing large-area, high-quality, monolayered WSe2 by utilizing methane (CH4) gas with precisely controlled pressure as a promoter. When compared to the catalytic growth of monolayered WSe2 without a gas-phase promoter, the catalytic growth of the monolayered WSe2 with a CH4 promoter reduced the nucleation density to 1/1000 and increased the grain size of monolayer WSe2 up to 100 µm. The significant improvement in the optical properties of the resulting WSe2 indicates that CH4 is a suitable candidate as a promoter for the synthesis of TMD materials, because it allows accurate gas control.

9.
Adv Mater ; 31(34): e1803469, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30734378

RESUMO

Since the first development of large-area graphene synthesis by the chemical vapor deposition (CVD) method in 2009, CVD-graphene has been considered to be a key material in the future electronics, energy, and display industries, which require transparent, flexible, and stretchable characteristics. Although many graphene-based prototype applications have been demonstrated, several important issues must be addressed in order for them to be compatible with current complementary metal-oxide-semiconductor (CMOS)-based manufacturing processes. In particular, metal contamination and mechanical damage, caused by the metal catalyst for graphene growth, are known to cause severe and irreversible deterioration in the performance of devices. The most effective way to solve the problems is to grow the graphene directly on the semiconductor substrate. Herein, recent advances in the direct growth of graphene on group-IV semiconductors are reviewed, focusing mainly on the growth mechanism and initial growth behavior when graphene is synthesized on Si and Ge. Furthermore, recent progress in the device applications of graphene with Si and Ge are presented. Finally, perspectives for future research in graphene with a semiconductor are discussed.

10.
Chem Soc Rev ; 46(20): 6276-6300, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28857098

RESUMO

Graphene has recently been attracting considerable interest because of its exceptional conductivity, mechanical strength, thermal stability, etc. Graphene-based devices exhibit high potential for applications in electronics, optoelectronics, and energy harvesting. In this paper, we review various growth strategies including metal-catalyzed transfer-free growth and direct-growth of graphene on flexible and rigid insulating substrates which are "major issues" for avoiding the complicated transfer processes that cause graphene defects, residues, tears and performance degradation in graphene-based functional devices. Recent advances in practical applications based on "direct-grown graphene" are discussed. Finally, several important directions, challenges and perspectives in the commercialization of 'direct growth of graphene' are also discussed and addressed.

11.
Nanotechnology ; 26(45): 455304, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26491038

RESUMO

Graphene growth on a copper surface via metal-catalyzed chemical vapor deposition has several advantages in terms of providing high-quality graphene with the potential for scale-up, but the product is usually inhomogeneous due to the inability to control the graphene layer growth. The non-uniform regions strongly affect the reliability of the graphene in practical electronic applications. Herein, we report a novel graphene transfer method that allows for the selective exfoliation of single-layer graphene from non-uniform graphene grown on a Cu foil. Differences in the interlayer bonding energy are exploited to mechanically separate only the top single-layer graphene and transfer this to an arbitrary substrate. The dry-transferred single-layer grapheme showed electrical characteristics that were more uniform than those of graphene transferred using conventional wet-etching transfer steps.

12.
ChemSusChem ; 8(14): 2372-7, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25939904

RESUMO

A thermoelectric device that can generate electricity from waste heat can play an important role in a global energy solution. However, the strongly correlated thermoelectric properties have remained a major hurdle for the highly efficient conversion of thermoelectric energy. Herein, the electrical and thermal properties of Si and SiO2 nanowires with few-layer graphitic shells are demonstrated; these structures exhibit enhanced electrical properties but no increase in thermal conductivity. The main path of the phonons through the structures is the core nanowire, which has a large cross-sectional area relative to that of the graphitic shell layer. However, the electrical conductivities of the nanowires with shell structures are high because of the good electrical conductivity of the graphitic shell, despite its small cross-sectional area.


Assuntos
Condutividade Elétrica , Grafite/química , Temperatura Alta , Nanofios/química , Fontes de Energia Elétrica , Silício/química , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...