Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1376831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774409

RESUMO

Background: Cancer metastasis is dependent on cell migration. Several mechanisms, including epithelial-to-mesenchymal transition (EMT) and actin fiber formation, could be involved in cancer cell migration. As a downstream effector of the Hippo signaling pathway, transcriptional coactivator with PDZ-binding motif (TAZ) is recognized as a key mediator of the metastatic ability of breast cancer cells. We aimed to examine whether TAZ affects the migration of breast cancer cells through the regulation of EMT or actin cytoskeleton. Methods: MCF-7 and MDA-MB-231 cells were treated with siRNA to attenuate TAZ abundance. Transwell migration assay and scratch wound healing assay were performed to study the effects of TAZ knockdown on cancer cell migration. Fluorescence microscopy was conducted to examine the vinculin and phalloidin. Semiquantitative immunoblotting and quantitative real-time PCR were performed to study the expression of small GTPases and kinases. Changes in the expression of genes associated with cell migration were examined through next-generation sequencing. Results: TAZ-siRNA treatment reduced TAZ abundance in MCF-7 and MDA-MB-231 breast cancer cells, which was associated with a significant decrease in cell migration. TAZ knockdown increased the expression of fibronectin, but it did not exhibit the typical pattern of EMT progression. TGF-ß treatment in MDA-MB-231 cells resulted in a reduction in TAZ and an increase in fibronectin levels. However, it paradoxically promoted cell migration, suggesting that EMT is unlikely to be involved in the decreased migration of breast cancer cells in response to TAZ suppression. RhoA, a small Rho GTPase protein, was significantly reduced in response to TAZ knockdown. This caused a decrease in the expression of the Rho-dependent downstream pathway, i.e., LIM kinase 1 (LIMK1), phosphorylated LIMK1/2, and phosphorylated cofilin, leading to actin depolymerization. Furthermore, myosin light chain kinase (MLCK) and phosphorylated MLC2 were significantly decreased in MDA-MB-231 cells with TAZ knockdown, inhibiting the assembly of stress fibers and focal adhesions. Conclusion: TAZ knockdown inhibits the migration of breast cancer cells by regulating the intracellular actin cytoskeletal organization. This is achieved, in part, by reducing the abundance of RhoA and Rho-dependent downstream kinase proteins, which results in actin depolymerization and the disassembly of stress fibers and focal adhesions.

2.
Am J Physiol Renal Physiol ; 326(1): F69-F85, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855039

RESUMO

Poly(ADP-ribosyl)ation (PARylation), as a posttranslational modification mediated by poly(ADP-ribose) polymerases (PARPs) catalyzing the transfer of ADP-ribose from NAD+ molecules to acceptor proteins, involves a number of cellular processes. As mice lacking the PARP-1 gene (Parp1) produce more urine, we investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). In biotin-conjugated nicotinamide adenine dinucleotide (biotin-NAD+) pulldown and immunoprecipitation assays of poly(ADP)-ribose in mpkCCDc14 cells, immunoblots demonstrated that 1-deamino-8-D-arginine vasopressin (dDAVP) induced the PARylation of total proteins, associated with an increase in the cleavage of PARP-1 and cleaved caspase-3 expression. By inhibiting PARP-1 with siRNA, the abundance of dDAVP-induced AQP2 mRNA and protein was significantly diminished. In contrast, despite a substantial decrease in PARylation, the PARP-1 inhibitor (PJ34) had no effect on the dDAVP-induced regulation of AQP2 expression. The findings suggest that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. Bioinformatic analysis revealed that 408 proteins interact with PARP-1 in the collecting duct (CD) cells of the kidney. Among them, the signaling pathway of the vasopressin V2 receptor was identified for 49 proteins. In particular, ß-catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein. A significant decrease of ß-catenin phosphorylation (Ser552) in response to dDAVP was associated with siRNA-mediated PARP-1 knockdown. Taken together, PARP-1 is likely to play a role in vasopressin-induced AQP2 expression by interacting with ß-catenin in renal CD cells.NEW & NOTEWORTHY The poly(ADP-ribose) polymerase (PARP) family catalyzes poly(ADP-ribosylation) (PARylation), which is one of the posttranslational modifications of largely undetermined physiological significance. This study investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). The results demonstrated that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. ß-Catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein.


Assuntos
Aquaporina 2 , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Aquaporina 2/genética , beta Catenina/metabolismo , Biotina/metabolismo , Desamino Arginina Vasopressina/farmacologia , Rim/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno , Vasopressinas/farmacologia , Vasopressinas/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675199

RESUMO

mpkCCDc14 cells, a polarized epithelial cell line derived from mouse kidney cortical collecting ducts, are known to express the vasopressin V2 receptor (V2R) and aquaporin-2 (AQP2) that are responsive to vasopressin. However, a low abundance of the endogenous AQP2 protein in the absence of vasopressin and heterogeneity of AQP2 protein abundance among the cultured cells may limit the further application of the cell line in AQP2 studies. To overcome the limitation, we aimed to establish mpkCCDc14 cells constitutively expressing V2R and AQP2 via CRISPR/Cas9-mediated genome engineering technology (i.e., V2R-AQP2 cells). 3'- and 5'-Junction PCR revealed that the V2R-AQP2 expression cassette with a long insert size (~2.2 kb) was correctly integrated. Immunoblotting revealed the expression of products of integrated Aqp2 genes. Cell proliferation rate and dDAVP-induced cAMP production were not affected by the knock-in of Avpr2 and Aqp2 genes. The AQP2 protein abundance was significantly higher in V2R-AQP2 cells compared with control mpkCCDc14 cells in the absence of dDAVP and the integrated AQP2 was detected. Immunocytochemistry demonstrated that V2R-AQP2 cells exhibited more homogenous and prominent AQP2 labeling intensity in the absence of dDAVP stimulation. Moreover, prominent AQP2 immunolabeling (both AQP2 and pS256-AQP2) in the apical domain of the genome-edited cells was observed in response to dDAVP stimulation, similar to that in the unedited control mpkCCDc14 cells. Taken together, mpkCCDc14 cells constitutively expressing V2R and AQP2 via genome engineering could be exploited for AQP2 studies.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Desamino Arginina Vasopressina/metabolismo , Túbulos Renais Coletores/metabolismo , Vasopressinas/metabolismo , Membrana Celular/metabolismo
4.
Sci Rep ; 11(1): 17896, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504268

RESUMO

This study assessed the clinical risk factors for periorbital dermatitis (PD) after using dorzolamide/timolol eye drops in a total of 1282 glaucoma patients. Both the PD(+) group and the PD(-) group were evaluated using clinical data such as age, sex, dosing duration, presence of benzalkonium chloride (BAK) in the formulation, ocular surgery history (e.g. cataract or glaucoma operations), height, weight, personal history of systemic hypertension, smoking, alcohol consumption, intraocular pressure, best-corrected visual acuity (BCVA), central corneal thickness, axial length, and visual field index (VFI). Univariate analyses showed that shorter dosing duration, higher rate of BAK-included cases, worse BCVA, worse VFI, more systemic hypertension history, and more ocular surgery history were more associated with the PD(+) group than the PD(-) group. The BAK(-) group showed a lower PD rate than the BAK-included group, which was supported by the Kaplan-Meier analysis (log-rank test, p = 0.0014). Multivariate analyses revealed that the probability of PD increased by 8 times if they had a history of ocular surgery and increased by 2.3% when the VFI decreased by 1% (Cox's hazard regression test, p < 0.001). Therefore, a preservative-free dorzolamide/timolol can benefit the subjects for those who had ocular surgery or who have worse VFI.


Assuntos
Dermatite/etiologia , Glaucoma/tratamento farmacológico , Soluções Oftálmicas/efeitos adversos , Conservantes Farmacêuticos/efeitos adversos , Sulfonamidas/efeitos adversos , Tiofenos/efeitos adversos , Timolol/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
5.
Biochimie ; 188: 52-60, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894294

RESUMO

Aquaporins (AQPs) are water channel proteins facilitating passive transport of water and other small molecules across biomembranes. Regulation of osmotic homeostasis via AQPs is accompanied by dynamic participation of various cellular signaling pathways. Recently emerging evidence reveals that functional roles of AQPs are further extended from the osmotic regulation via water permeation into the cell proliferation and differentiation. In particular, anomalous expression of AQPs has been demonstrated in various types of cancer cells and cancer stem-like cells and it has been proposed as markers for proliferation and progression of cancer cells. Thus, a more comprehensive view on AQPs could bring a great interest in the cell stemness accompanied by the expression of AQPs. AQPs are broadly expressed across tissues and cells in a cell type- and lineage-specific manner during development via spatiotemporal transcriptional regulation. Moreover, AQPs are expressed in various adult stem cells and cells associated with a stem cell niche as well as cancer stem-like cells. However, the expression and regulatory mechanisms of AQP expression in stem cells have not been well understood. This review highlighted the AQPs expression in stem cell niches/stem cells and the involvement of AQPs in the cell proliferation and signaling pathways associated with cell stemness.


Assuntos
Aquaporinas/fisiologia , Proliferação de Células , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco/citologia
6.
Kidney Int ; 99(1): 117-133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853632

RESUMO

Cell therapy using genome-engineered stem cells has emerged as a novel strategy for the treatment of kidney diseases. By exploiting genome editing technology, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) secreting an angiogenic factors or an anti-inflammatory factor were generated for therapeutic application in acute kidney injury. Junction polymerase chain reaction analysis verified zinc finger nucleases-assisted integration of the desired gene into the hUC-MSCs. Flow cytometry and differentiation assays indicated that genome editing did not affect the differentiation potential of these mesenchymal stem cells. Protein measurement in conditioned media with the use of ELISA and immunoblotting revealed the production and secretion of each integrated gene product. For cell therapy in the bilateral ischemia-reperfusion mouse model of acute kidney injury, our innovative scaffold-free cell sheets were established using a non-biodegradable temperature-responsive polymer. One of each type of scaffold-free cell sheets of either the angiogenic factor vascular endothelial grown factor or angiopoietin-1, or the anti-inflammatory factor erythropoietin, or α-melanocyte-stimulating hormone-secreting hUC-MSCs was applied to the decapsulated kidney surface. This resulted in significant amelioration of kidney dysfunction in the mice with acute kidney injury, effects that were superior to intravenous administration of the same genome-engineered hUC-MSCs. Thus, our scaffold-free cell sheets of genome-engineered mesenchymal stem cells provides therapeutic effects by inhibiting acute kidney injury via angiogenesis or anti-inflammation.


Assuntos
Injúria Renal Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Injúria Renal Aguda/genética , Injúria Renal Aguda/terapia , Animais , Diferenciação Celular , Camundongos , Cordão Umbilical
7.
Cells ; 9(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413996

RESUMO

Sorting nexin 27 (SNX27), a PDZ (Postsynaptic density-95/Discs large/Zonula occludens 1) domain-containing protein, cooperates with a retromer complex, which regulates intracellular trafficking and the abundance of membrane proteins. Since the carboxyl terminus of aquaporin-2 (AQP2c) has a class I PDZ-interacting motif (X-T/S-X-Φ), the role of SNX27 in the regulation of AQP2 was studied. Co-immunoprecipitation assay of the rat kidney demonstrated an interaction of SNX27 with AQP2. Glutathione S-transferase (GST) pull-down assays revealed an interaction of the PDZ domain of SNX27 with AQP2c. Immunocytochemistry of HeLa cells co-transfected with FLAG-SNX27 and hemagglutinin (HA)-AQP2 also revealed co-localization throughout the cytoplasm. When the PDZ domain was deleted, punctate HA-AQP2 labeling was localized in the perinuclear region. The labeling was intensively overlaid by Lysotracker staining but not by GM130 labeling, a cis-Golgi marker. In rat kidneys and primary cultured inner medullary collecting duct cells, the subcellular redistribution of SNX27 was similar to AQP2 under 1-deamino-8-D-arginine vasopressin (dDAVP) stimulation/withdrawal. Cell surface biotinylation assay showed that dDAVP-induced AQP2 translocation to the apical plasma membrane was unaffected after SNX27 knockdown in mpkCCD cells. In contrast, the dDAVP-induced AQP2 protein abundance was significantly attenuated without changes in AQP2 mRNA expression. Moreover, the AQP2 protein abundance was markedly declined during the dDAVP withdrawal period after stimulation under SNX27 knockdown, which was inhibited by lysosome inhibitors. Autophagy was induced after SNX27 knockdown in mpkCCD cells. Lithium-induced nephrogenic diabetes insipidus in rats revealed a significant downregulation of SNX27 in the kidney inner medulla. Taken together, the PDZ domain-containing SNX27 interacts with AQP2 and depletion of SNX27 contributes to the autophagy-lysosomal degradation of AQP2.


Assuntos
Aquaporina 2/metabolismo , Túbulos Renais Coletores/metabolismo , Lisossomos/metabolismo , Proteólise , Nexinas de Classificação/metabolismo , Animais , Aquaporina 2/genética , Autofagia , Diabetes Insípido/metabolismo , Diabetes Insípido/patologia , Células HEK293 , Células HeLa , Humanos , Lítio , Masculino , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Nexinas de Classificação/genética
8.
FASEB J ; 34(2): 3379-3398, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31922312

RESUMO

Aquaporin-5 (AQP5) plays a role in breast cancer cell migration. This study aimed to identify AQP5-targeting miRNAs and examine their effects on breast cancer cell migration through exosome-mediated delivery. Bioinformatic analyses identified miR-1226-3p, miR-19a-3p, and miR-19b-3p as putative regulators of AQP5 mRNA. Immunoblotting revealed a decrease of AQP5 protein abundance when each of these miRNAs was transfected into human breast cancer MDA-MB-231 cells. Quantitative real-time PCR demonstrated the reduction of AQP5 mRNA expression by the transfection of miR-1226-3p and a luciferase reporter assay revealed the reduction of AQP5 translation after the transfection of miR-19b-3p in MDA-MB-231 cells. Consistently, the transfection of each miRNA impeded cell migration. Pathway enrichment analyses showed that these three miRNAs regulate target genes, which were predominantly enriched in the gap junction pathway. For the efficient delivery of AQP5-targeting miRNAs to breast cancer cells, exosomes expressing both miRNAs and a peptide targeting interleukin-4 receptor, which is highly expressed in breast cancer cells, were bioengineered and their inhibitory effects on AQP5 protein expression and cell migration were demonstrated in MDA-MB-231 cells. Taken together, AQP5-regulating miRNAs are identified, which could be exploited for the inhibition of breast cancer cell migration via the exosome-mediated delivery.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Exossomos/metabolismo , MicroRNAs/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Feminino , Células HEK293 , Humanos , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Células MCF-7 , MicroRNAs/genética , Oligopeptídeos/metabolismo
9.
Korean J Ophthalmol ; 33(2): 103-112, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30977319

RESUMO

PURPOSE: To assess the clinical efficacy for early detection of glaucoma using custom-built image software visualizing translucent retinal nerve fiber layer thickness (RNFLT) that is graphed based on a normative database. METHODS: This prospective study was conducted using a normative database constructed with RNFLT data of 151 healthy Korean eyes. The reference lines of the mean, the lower 5%, and the lower 1% limit were visualized as a translucent RNFLT graph produced by our software after inputting each subject's major retinal artery position and overlaying the results onto the RNFLT measurements. Fifty-eight additional healthy control and 79 early-glaucoma eyes were collected for the validation group. If a subject's RNFLT graph was outside the reference line of the lower 1% limit, the graph was defined as abnormal. The lower 1% limit, which was generated by three criteria (criterion 1, built-in software; criterion 2, axial-length data; criterion 3, major retinal artery data), was used to address the difference of agreement with a standard answer. RESULTS: For criteria 1, 2, and 3, the accuracy of our custom-built software was significantly higher than that of the manufacturer's database (kappa of 0.475 vs. 0.852 vs. 0.940; sensitivity of 62.0% vs. 91.1% vs. 97.5%, respectively) maintaining high specificity (87.9% vs. 94.8% vs. 96.6%, respectively). CONCLUSIONS: The custom-built imaging software with the constructed RNFLT normative database showed high clinical efficiency for early detection of glaucoma with negligible user-related variability.


Assuntos
Comprimento Axial do Olho/diagnóstico por imagem , Diagnóstico Precoce , Glaucoma/diagnóstico , Artéria Retiniana/diagnóstico por imagem , Células Ganglionares da Retina/patologia , Software , Tomografia de Coerência Óptica/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Glaucoma/fisiopatologia , Humanos , Pressão Intraocular , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...