Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 11(29): 5821-7, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26059259

RESUMO

We have investigated the distributions of individually isolated and hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) in the Pluronic L121-water system at the reverse hexagonal phase using small-angle X-ray scattering (SAXS) and contrast-matched small-angle neutron scattering (SANS) measurements. As the p-SWNT-L121-water system is transitioned from the lamellar phase to the reverse hexagonal phase with temperature, p-SWNTs which were selectively distributed in the polar layers of the lamellar structure become selectively distributed in the cylindrical polar cores of the reverse hexagonal structure, forming a hexagonal array of p-SWNTs. This was clearly confirmed by the contrast-matched SANS measurements. The selective distribution of p-SWNTs in the reverse hexagonal phase is driven by the selective affinity of p-SWNTs to the polar domains of the block copolymer system. The method demonstrated in this study provides a new route for fabricating ordered SWNT superstructures and may be applicable for inorganic 1D nanoparticles such as semiconducting, metallic and magnetic nanorods which are of great interest.

2.
Angew Chem Int Ed Engl ; 53(46): 12548-54, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25244635

RESUMO

We report a highly ordered intercalated hexagonal binary superlattice of hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) and surfactant (C12 E5 ) cylindrical micelles. When p-SWNTs (with a diameter slightly larger than that of the C12 E5 cylinders) were added to the hexagonally packed C12 E5 cylindrical-micellar system, p-SWNTs positioned themselves in such a way that the free-volume entropies for both p-SWNTs and C12 E5 cylinders were maximized, thus resulting in the intercalated hexagonal binary superlattice. In this binary superlattice, a hexagonal array of p-SWNTs is embedded in a honeycomb lattice of C12 E5 cylinders. The intercalated hexagonal binary superlattice can be highly aligned in one direction by an oscillatory shear field and remains aligned after the shear is removed.


Assuntos
Micelas , Nanotubos de Carbono/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Tensoativos/química
3.
J Chem Phys ; 138(11): 114701, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23534647

RESUMO

The interaction force between functionalized single-walled carbon nanotubes (SWNTs) plays an important role in the fabrication of self-assembled and highly ordered SWNT arrays for a wide range of potential applications. Here, we measured interaction force between SWNTs encapsulated with polymerized surfactant monolayer (p-SWNTs). The balance between the repulsion between p-SWNTs and the osmotic pressure exerted by poly(ethylene glycol) in aqueous solution results in two-dimensional hexagonal arrays of p-SWNTs with very small surface to surface distances (<1 nm). The interaction force measured by the osmotic pressure technique shows characteristic decay length of hydration force in its origin.

4.
J Am Chem Soc ; 131(45): 16568-72, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19902979

RESUMO

Fabrication of highly ordered arrays of single-walled carbon nanotubes (SWNTs) has been of great interest for a wide range of potential applications. Here, we report thermally switchable one- and two-dimensional arrays of individually isolated SWNTs formed by cooperative self-assembly of functionalized SWNTs and a block copolymer/water system. Small-angle X-ray scattering measurements reveal that when the block copolymer/water system is in an isotropic phase, two-dimensional hexagonal arrays of SWNTs are formed by depletion attraction, and when the block copolymer/water system is in a lamellar phase, one-dimensional lattices of SWNTs intercalated in the polar regions of the polymeric lamellar structure are formed by entropically driven segregation and two-dimensional depletion attraction. These two SWNT arrays are thermally interchangeable, following the temperature-dependent phase behavior of the block copolymer/water system.


Assuntos
Nanotubos de Carbono/química , Polietilenoglicóis/química , Propilenoglicóis/química , Temperatura , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...