Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(9): 1653-1658, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905433

RESUMO

Lithium-Sulfur (Li-S) batteries are one of the most promising next-generation batteries due to their ultrahigh energy density up to 500 W h kg-1. However, despite the steady progress during the last several decades, there have been significant challenges for practical applications and commercialization. One of the major issues is controlling the lithium polysulfide (LiPS) shuttling process, which causes premature cell failure. To better understand the mechanism of the LiPS shuttling chemistry, a qualitative and quantitative analysis on polysulfide species in Li-S cell has profound significance for realizing highly efficient sulfur electrochemistry. Here we report a qualitative determination of the derivatized polysulfides in the electrolyte of a custom-made Li-S pouch cell with a high-resolution liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry method for the first time. The ionization efficiency of the methylated polysulfides was affected by the tune parameters such as the corona discharge current, the vaporizer temperature, and the source capillary temperature. It was found that the source capillary temperature was the dominant parameter to increase the peak intensity of CH3S7- ion, which was the smallest peak in the spectrum. An unusual and unique ionization pattern for methylated polysulfides detected in atmospheric pressure chemical ionization negative mode was elucidated by using first-principles calculations.

2.
Electrophoresis ; 32(16): 2167-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21766477

RESUMO

In this study, an open-tubular capillary electrochromatography (OT-CEC) column with a monolithic layer of molecularly imprinted polymer (MIP) based on methacrylic acid, ethylene glycol dimethacrylate, and 4-styrenesulfonic acid was utilized for the simultaneous separation and characterization of phospholipid (PL) molecular structures by interfacing with electrospray ionization-tandem mass spectrometry (ESI-MS-MS). Introducing an MIP-based monolith along with charged species at the OT column made it possible to separate PL molecules based on differences in head groups and acyl chain lengths in CEC. For the interface of OT-CEC with ESI-MS-MS, a simple nanospray interface utilizing a sheath flow was developed and the resulting OT-CEC-ESI-MS-MS was able to separate PL standards (phosphatidylserines, phosphatidylethanolamines, phosphatidylglycerols, phosphatidic acid, and lysophosphatidylglycerols). The developed method was applied to human urinary lipid extracts, and resulted in the separation and structural identification of 18 molecules by data-dependent collision-induced dissociation.


Assuntos
Eletrocromatografia Capilar/instrumentação , Eletrocromatografia Capilar/métodos , Impressão Molecular/métodos , Fosfolipídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Humanos , Fosfolipídeos/química , Fosfolipídeos/urina , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...