Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(10): 7580-7595, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422400

RESUMO

The lack of both digital light processing (DLP) compatible and biocompatible photopolymers, along with inappropriate material properties required for wearable sensor applications, substantially hinders the employment of DLP 3D printing in the fabrication of multifunctional hydrogels. Herein, we discovered and implemented a photoreactive poloxamer derivative, Pluronic F-127 diacrylate, which overcomes these limitations and is optimized to achieve DLP 3D printed micelle-based hydrogels with high structural complexity, resolution, and precision. In addition, the dehydrated hydrogels exhibit a shape-memory effect and are conformally attached to the geometry of the detection point after rehydration, which implies the 4D printing characteristic of the fabrication process and is beneficial for the storage and application of the device. The excellent cytocompatibility and in vivo biocompatibility further strengthen the potential application of the poloxamer micelle-based hydrogels as a platform for multifunctional wearable systems. After processing them with a lithium chloride (LiCl) solution, multifunctional conductive ionic hydrogels with antifreezing and antiswelling properties along with good transparency and water retention are easily prepared. As capacitive flexible sensors, the DLP 3D printed micelle-based hydrogel devices exhibit excellent sensitivity, cycling stability, and durability in detecting multimodal deformations. Moreover, the DLP 3D printed conductive hydrogels are successfully applied as real-time human motion and tactile sensors with satisfactory sensing performances even in a -20 °C low-temperature environment.


Assuntos
Micelas , Dispositivos Eletrônicos Vestíveis , Humanos , Poloxâmero , Condutividade Elétrica , Hidrogéis , Impressão Tridimensional
2.
Sci Adv ; 8(47): eade4284, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417509

RESUMO

A fully rubbery stretchable diode, particularly entirely based on stretchy materials, is a crucial device for stretchable integrated electronics in a wide range of applications, ranging from energy to biomedical, to integrated circuits, and to robotics. However, its development has been very nascent. Here, we report a fully rubbery Schottky diode constructed all based on stretchable electronic materials, including a liquid metal cathode, a rubbery semiconductor, and a stretchable anode. The rubbery Schottky diode exhibited a forward current density of 6.99 × 10-3 A/cm2 at 5 V and a rectification ratio of 8.37 × 104 at ±5 V. Stretchy rectifiers and logic gates based on the rubbery Schottky diodes were developed and could retain their electrical performance even under 30% tensile stretching. With the rubbery diodes, fully rubbery integrated electronics, including an active matrix multiplexed tactile sensor and a triboelectric nanogenerator-based power management system, are further demonstrated.

3.
Small ; 18(36): e2107099, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36073141

RESUMO

The need to develop wearable devices for personal health monitoring, diagnostics, and therapy has inspired the production of innovative on-demand, customizable technologies. Several of these technologies enable printing of raw electronic materials directly onto biological organs and tissues. However, few of them have been thoroughly investigated for biocompatibility of the raw materials on the cellular, tissue, and organ levels or with different cell types. In addition, highly accurate multiday in vivo monitoring using such on-demand, in situ fabricated devices has yet to be done. Presented herein is the first fully biocompatible, on-skin fabricated electronics for multiple cell types and tissues that can capture electrophysiological signals with high fidelity. While also demonstrating improved mechanical and electrical properties, the drawn-on-skin ink retains its properties under various writing conditions, which minimizes the variation in electrical performance. Furthermore, the drawn-on-skin ink shows excellent biocompatibility with cardiomyocytes, neurons, mice skin tissue, and human skin. The high signal-to-noise ratios of the electrophysiological signals recorded with the DoS sensor over multiple days demonstrate its potential for personalized, long-term, and accurate electrophysiological health monitoring.


Assuntos
Tinta , Dispositivos Eletrônicos Vestíveis , Animais , Eletrônica , Eletrofisiologia , Humanos , Camundongos , Pele
4.
Proc Natl Acad Sci U S A ; 119(23): e2204852119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648822

RESUMO

Cephalopod (e.g., squid, octopus, etc.) skin is a soft cognitive organ capable of elastic deformation, visualizing, stealth, and camouflaging through complex biological processes of sensing, recognition, neurologic processing, and actuation in a noncentralized, distributed manner. However, none of the existing artificial skin devices have shown distributed neuromorphic processing and cognition capabilities similar to those of a cephalopod skin. Thus, the creation of an elastic, biaxially stretchy device with embedded, distributed neurologic and cognitive functions mimicking a cephalopod skin can play a pivotal role in emerging robotics, wearables, skin prosthetics, bioelectronics, etc. This paper introduces artificial neuromorphic cognitive skins based on arrayed, biaxially stretchable synaptic transistors constructed entirely out of elastomeric materials. Systematic investigation of the synaptic characteristics such as the excitatory postsynaptic current, paired-pulse facilitation index of the biaxially stretchable synaptic transistor under various levels of biaxial mechanical strain sets the operational foundation for stretchy distributed synapse arrays and neuromorphic cognitive skin devices. The biaxially stretchy arrays here achieved neuromorphic cognitive functions, including image memorization, long-term memorization, fault tolerance, programming, and erasing functions under 30% biaxial mechanical strain. The stretchy neuromorphic imaging sensory skin devices showed stable neuromorphic pattern reinforcement performance under both biaxial and nonuniform local deformation.


Assuntos
Órgãos Artificiais , Robótica , Pele , Sinapses , Animais , Cefalópodes , Cognição , Pele/inervação , Transistores Eletrônicos
5.
Nanotechnology ; 29(23): 235602, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29582775

RESUMO

Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

6.
Sensors (Basel) ; 16(6)2016 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-27294941

RESUMO

Sensor fusion techniques have made a significant contribution to the success of the recently emerging mobile applications era because a variety of mobile applications operate based on multi-sensing information from the surrounding environment, such as navigation systems, fitness trackers, interactive virtual reality games, etc. For these applications, the accuracy of sensing information plays an important role to improve the user experience (UX) quality, especially with gyroscopes and accelerometers. Therefore, in this paper, we proposed a novel mechanism to resolve the gyro drift problem, which negatively affects the accuracy of orientation computations in the indirect Kalman filter based sensor fusion. Our mechanism focuses on addressing the issues of external feedback loops and non-gyro error elements contained in the state vectors of an indirect Kalman filter. Moreover, the mechanism is implemented in the device-driver layer, providing lower process latency and transparency capabilities for the upper applications. These advances are relevant to millions of legacy applications since utilizing our mechanism does not require the existing applications to be re-programmed. The experimental results show that the root mean square errors (RMSE) before and after applying our mechanism are significantly reduced from 6.3 × 10(-1) to 5.3 × 10(-7), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...