Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 13(11)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28075054

RESUMO

Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed "Internet of Things" network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy-density lithium-ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost-competitiveness. Here, inkjet-printed lithium-sulfur (Li-S) cathodes for integrated nanomanufacturing are reported. Single-wall carbon nanotubes infused with electronically conductive straight-chain sulfur (S@SWNT) are adopted as an integrated current-collector/active-material composite, and inkjet printing as a top-down approach to achieve thin-film shape control over printed electrode dimensions is used. The novel Li-S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO2 ) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid-state mechanism. The printed electrodes produce ≈800 mAh g-1 S initially and ≈700 mAh g-1 after 100 charge/discharge cycles at C/2 rate.

2.
Small ; 11(41): 5505-9, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26312458

RESUMO

Short channel field-effect-transistors with inkjet-printed semiconducting carbon nanotubes are fabricated using a novel strategy to minimize material consumption, confining the inkjet droplet into the active channel area. This fabrication approach is compatible with roll-to-roll processing and enables the formation of high-performance short channel device arrays based on inkjet printing.

3.
Nano Lett ; 14(6): 3683-7, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24849313

RESUMO

The materials combination of inkjet-printed single-walled carbon nanotubes (SWCNTs) and zinc tin oxide (ZTO) is very promising for large-area thin-film electronics. We compare the characteristics of conventional complementary inverters and ring oscillators measured in air (with SWCNT p-channel field effect transistors (FETs) and ZTO n-channel FETs) with those of ambipolar inverters and ring oscillators comprised of bilayer SWCNT/ZTO FETs. This is the first such comparison between the performance characteristics of ambipolar and conventional inverters and ring oscillators. The measured signal delay per stage of 140 ns for complementary ring oscillators is the fastest for any ring oscillator circuit with printed semiconductors to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...