Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 194: 105463, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532308

RESUMO

Plant glutathione S-transferase (GST, EC 2.5.1.18) is an enzyme that detoxifies various electrophilic compounds including herbicides and organic pollutants by catalyzing the formation of conjugates with reduced glutathione (GSH). Although the structure and function of the GST subunits in rice, an important food in Asia, are not well understood, they are crucial for herbicide development. To investigate the role of active site residues in rice Phi-class GSTF3 (OsGSTF3), evolutionarily conserved serine residues were replaced with alanine using site-directed mutagenesis to obtain the mutants S13A, S38A, S69A, and S169A. These four mutants were expressed in Escherichia coli and purified to electrophoretic homogeneity using immobilized GSH affinity chromatography. Mutation of Ser13 to Ala resulted in substantial reductions in specific activities and kcat/Km values for the GSH-[1-chloro-2,4-dinitrobenzene (CDNB)] conjugation reaction. In contrast, mutations of Ser38, Ser69, and Ser169 to Ala had little effect on the activities and kinetic parameters. Additionally, the mutation of Ser13 to Ala significantly affected the KmGSH and I50 values of S-hexylglutathione and S-(2,4-dinitrophenyl)glutathione, which compete with GSH and the product of GSH-CDNB conjugation, respectively. A pH-log (kcat/KmCDNB) plot was used to estimate the pKa value of GSH in the enzyme-GSH complex of the wild-type enzyme, which was approximately 6.9. However, the pKa value of GSH in the enzyme-GSH complex of the S13A mutant was approximately 8.7, which was about 1.8 pK units higher than that of the wild-type enzyme. OsGSTF3 was also crystallized for crystallographic study, and the structure analyses revealed that Ser13 is located in the active site and that its side chain is in close proximity to the thiol group of glutathione bound in the enzyme. Based on these substitution effects on kinetic parameters, the dependence of kinetic parameters on the pH and 3-dimensional structure, it was suggested that Ser13 in rice OsGSTF3 is the residue responsible for catalytic activity by lowering the pKa of GSH in the enzyme-GSH complex and enhancing the nucleophilicity of the GSH thiol in the active site.


Assuntos
Oryza , Domínio Catalítico , Oryza/genética , Oryza/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Serina , Compostos de Sulfidrila/metabolismo , Cinética , Glutationa/metabolismo , Sítios de Ligação
2.
Anal Biochem ; 641: 114560, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065043

RESUMO

Rapid and simple spectrophotometric methods are required to detect various oligosaccharides produced by agar-hydrolysing enzymes. Herein, we present a quantitative agarose-iodine assay for agarase activity determination via the detection of the extent of agarose degradation. The agarose-iodine complex becomes reddish orange upon the addition of Lugol solution, and the enzymatic activity can be detected with ultraviolet-visible spectroscopy at 600 nm. The main advantages of this modified Lugol assay are high sensitivity, simple detection, and cost effectiveness. A novel definition of the unit to measure and compare the activities of agarases is also suggested.


Assuntos
Glicosídeo Hidrolases/análise , Iodo/química , Sefarose/química , Alteromonadaceae/enzimologia , Corantes Fluorescentes/química , Glicosídeo Hidrolases/metabolismo , Iodetos/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...